public class Imputer extends Estimator<ImputerModel> implements ImputerParams, DefaultParamsWritable
Note that the mean/median value is computed after filtering out missing values. All Null values in the input columns are treated as missing, and so are also imputed. For computing median, DataFrameStatFunctions.approxQuantile is used with a relative error of 0.001.
Modifier and Type | Method and Description |
---|---|
Imputer |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
ImputerModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
static Imputer |
load(String path) |
static MLReader<T> |
read() |
Imputer |
setInputCols(String[] value) |
Imputer |
setMissingValue(double value) |
Imputer |
setOutputCols(String[] value) |
Imputer |
setStrategy(String value)
Imputation strategy.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getMissingValue, getStrategy, missingValue, strategy, validateAndTransformSchema
getInputCols, inputCols
getOutputCols, outputCols
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
write
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static Imputer load(String path)
public static MLReader<T> read()
public String uid()
Identifiable
uid
in interface Identifiable
public Imputer setInputCols(String[] value)
public Imputer setOutputCols(String[] value)
public Imputer setStrategy(String value)
value
- (undocumented)public Imputer setMissingValue(double value)
public ImputerModel fit(Dataset<?> dataset)
Estimator
fit
in class Estimator<ImputerModel>
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public Imputer copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Estimator<ImputerModel>
extra
- (undocumented)