public class RegressionMetrics extends Object implements Logging
param: predictionAndObservations an RDD of (prediction, observation) pairs param: throughOrigin True if the regression is through the origin. For example, in linear regression, it will be true without fitting intercept.
Constructor and Description |
---|
RegressionMetrics(RDD<scala.Tuple2<Object,Object>> predictionAndObservations) |
RegressionMetrics(RDD<scala.Tuple2<Object,Object>> predictionAndObservations,
boolean throughOrigin) |
Modifier and Type | Method and Description |
---|---|
double |
explainedVariance()
Returns the variance explained by regression.
|
double |
meanAbsoluteError()
Returns the mean absolute error, which is a risk function corresponding to the
expected value of the absolute error loss or l1-norm loss.
|
double |
meanSquaredError()
Returns the mean squared error, which is a risk function corresponding to the
expected value of the squared error loss or quadratic loss.
|
double |
r2()
Returns R^2^, the unadjusted coefficient of determination.
|
double |
rootMeanSquaredError()
Returns the root mean squared error, which is defined as the square root of
the mean squared error.
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public RegressionMetrics(RDD<scala.Tuple2<Object,Object>> predictionAndObservations, boolean throughOrigin)
public RegressionMetrics(RDD<scala.Tuple2<Object,Object>> predictionAndObservations)
public double explainedVariance()
public double meanAbsoluteError()
public double meanSquaredError()
public double rootMeanSquaredError()
public double r2()