org.apache.spark.mllib.tree.configuration

Strategy

class Strategy extends Serializable

:: Experimental :: Stores all the configuration options for tree construction

Annotations
@Experimental()
Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Strategy
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Strategy(algo: Algo.Algo, impurity: Impurity, maxDepth: Int, numClassesForClassification: Int, maxBins: Int, categoricalFeaturesInfo: Map[Integer, Integer])

    Java-friendly constructor for org.apache.spark.mllib.tree.configuration.Strategy

  2. new Strategy(algo: Algo.Algo, impurity: Impurity, maxDepth: Int, numClassesForClassification: Int = 2, maxBins: Int = 100, quantileCalculationStrategy: QuantileStrategy.QuantileStrategy = ..., categoricalFeaturesInfo: Map[Int, Int] = ..., maxMemoryInMB: Int = 128)

    algo

    Learning goal. Supported: org.apache.spark.mllib.tree.configuration.Algo.Classification, org.apache.spark.mllib.tree.configuration.Algo.Regression

    impurity

    Criterion used for information gain calculation. Supported for Classification: org.apache.spark.mllib.tree.impurity.Gini, org.apache.spark.mllib.tree.impurity.Entropy. Supported for Regression: org.apache.spark.mllib.tree.impurity.Variance.

    maxDepth

    Maximum depth of the tree. E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes.

    numClassesForClassification

    Number of classes for classification. (Ignored for regression.) Default value is 2 (binary classification).

    maxBins

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity.

    quantileCalculationStrategy

    Algorithm for calculating quantiles. Supported: org.apache.spark.mllib.tree.configuration.QuantileStrategy.Sort

    categoricalFeaturesInfo

    A map storing information about the categorical variables and the number of discrete values they take. For example, an entry (n -> k) implies the feature n is categorical with k categories 0, 1, 2, ... , k-1. It's important to note that features are zero-indexed.

    maxMemoryInMB

    Maximum memory in MB allocated to histogram aggregation. Default value is 128 MB.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. val algo: Algo.Algo

    Learning goal.

  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. val categoricalFeaturesInfo: Map[Int, Int]

    A map storing information about the categorical variables and the number of discrete values they take.

    A map storing information about the categorical variables and the number of discrete values they take. For example, an entry (n -> k) implies the feature n is categorical with k categories 0, 1, 2, ... , k-1. It's important to note that features are zero-indexed.

  9. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  12. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  14. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  15. val impurity: Impurity

    Criterion used for information gain calculation.

    Criterion used for information gain calculation. Supported for Classification: org.apache.spark.mllib.tree.impurity.Gini, org.apache.spark.mllib.tree.impurity.Entropy. Supported for Regression: org.apache.spark.mllib.tree.impurity.Variance.

  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. val isMulticlassClassification: Boolean

  18. val isMulticlassWithCategoricalFeatures: Boolean

  19. val maxBins: Int

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node.

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity.

  20. val maxDepth: Int

    Maximum depth of the tree.

    Maximum depth of the tree. E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes.

  21. val maxMemoryInMB: Int

    Maximum memory in MB allocated to histogram aggregation.

    Maximum memory in MB allocated to histogram aggregation. Default value is 128 MB.

  22. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  23. final def notify(): Unit

    Definition Classes
    AnyRef
  24. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  25. val numClassesForClassification: Int

    Number of classes for classification.

    Number of classes for classification. (Ignored for regression.) Default value is 2 (binary classification).

  26. val quantileCalculationStrategy: QuantileStrategy.QuantileStrategy

    Algorithm for calculating quantiles.

    Algorithm for calculating quantiles. Supported: org.apache.spark.mllib.tree.configuration.QuantileStrategy.Sort

  27. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  28. def toString(): String

    Definition Classes
    AnyRef → Any
  29. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped