Apache HTTP Server Documentation Version 2.5

Apache Software Foundation

June 1, 2016

About The PDF Documentation

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NO-
TICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this
file to You under the Apache License, Version 2.0 (the "License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

This version of the Apache HTTP Server Documentation is converted from XML source files to ITEX using XSLT
with the help of Apache Ant, Apache XML Xalan, and Apache XML Xerces.

Since the HTML version of the documentation is more commonly checked during development, the PDF ver-
sion may contain some errors and inconsistencies, especially in formatting. If you have difficulty reading a
part of this file, please consult the HTML version of the documentation on the Apache HTTP Server website at
http://httpd.apache.org/docs/trunk/

The Apache HTTP Server Documentation is maintained by the Apache HTTP Server Documentation Project. More
information is available at http://httpd.apache.org/docs-project/

http://www.apache.org/licenses/LICENSE-2.0
http://httpd.apache.org/docs/trunk/
http://httpd.apache.org/docs-project/

Contents

1 Release Notes

2

1.1
1.2
1.3
1.4
1.5

Upgradingto 2.4 from 2.2 L e
Overview of new features in Apache HTTP Server2.4
Overview of new features in Apache HTTP Server2.2
Overview of new features in Apache HTTP Server2.0

The Apache License, Version 2.0

Using the Apache HTTP Server

2.1
22
23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
221

Compiling and Installing L
Starting Apache L
Stopping and Restarting Apache HTTP Server
Configuration Files e e
Configuration SECONS i i e e e e e
Caching Guide e e e
Server-Wide Configuration e e e
Log Files o o e e e e e
Mapping URLs to Filesystem Locations
Dynamic Shared Object (DSO) Support
HTTP Protocol Compliance 0 o i it e e e e e e e e e e e
Content Negotiation ottt e e e
Custom Error Responses e
Binding to Addresses and Ports L. Lo
Multi-Processing Modules (MPMS) o e e e
Environment Variablesin Apache L
Expressions in Apache HTTP Server
Apache’s Handler Use e
S
Shared Object Cache in Apache HTTP Server
SUEXEC Support e e

iii

12
15
17

CONTENTS

222 Issues Regarding DNS and Apache HTTP Server 121
Apache Virtual Host documentation 123
3.1 Apache Virtual Host documentation e 124
32 Name-based Virtual Host Support 125
3.3 Apache IP-based Virtual Host Support 128
34 Dynamically Configured Mass Virtual Hosting 130
35 VirtualHost Examples L 134
3.6 An In-Depth Discussion of Virtual Host Matching 141
3.7 File Descriptor Limits o .o L e e 144
URL Rewriting Guide 145
4.1 Apache mod._rewrite e e e e e e 146
4.2 Apache mod_rewrite Introduction 147
4.3 Redirecting and Remapping with mod_rewrite 152
4.4 Using mod_rewrite to CONtrol aCCess v v v v i i e e e e e e e e e 159
4.5 Dynamic mass virtual hosts with mod_rewrite 162
4.6 Using mod_rewrite for Proxying 165
4.7 Using RewriteMap o 166
4.8 Advanced Techniques with mod_rewrite 172
4.9 Whennottouse mod_rewrite 175
4.10 RewriteRule Flags 0 e 178
4.11 Apache mod_rewrite Technical Details 187
Apache SSL/TLS Encryption 191
5.1 Apache SSL/TLS Encryptiono e 192
52 SSL/TLS Strong Encryption: An Introduction 193
5.3 SSL/TLS Strong Encryption: Compatibility 202
54 SSL/TLS Strong Encryption: How-To 206
5.5 SSL/TLS Strong Encryption: FAQ 212
Guides, Tutorials, and HowTos 225
6.1 How-To /Tutorials e e e e e 226
6.2 Authentication and Authorization oL 227
6.3 Access Control 234
6.4 Apache Tutorial: Dynamic Content with CGI 236
6.5 Apache httpd Tutorial: Introduction to Server Side Includes 243
6.6 Apache HTTP Server Tutorial: .htaccessfiles 249

6.7 Per-user web directories e e e 255

CONTENTS

6.8

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20

9.1
9.2
9.3
9.4
9.5
9.6

Reverse Proxy Guide

Platform-specific Notes

Platform Specific Notes e e e
Using Apache HTTP Server on Microsoft Windows
Compiling Apache for Microsoft Windows
Using Apache With RPM Based Systems (Redhat / CentOS /Fedora)
Using Apache With Novell NetWare i
Running a High-Performance Web Serveron HPUX

Apache HTTP Server and Supporting Programs

Server and Supporting Programs L. oL
httpd - Apache Hypertext Transfer Protocol Server
ab - Apache HTTP server benchmarkingtool
apachectl - Apache HTTP Server Control Interface
apxs - APache eXtenSiontool L
configure - Configure the source tree it e e e
dbmmanage - Manage user authentication files in DBM format
fcgistarter - Start a FastCGI program e
firchose - Demultiplex a firehose stream
htcacheclean - Clean up the disk cache
htdbm - Manipulate DBM password databases
htdigest - manage user files for digest authentication,
htpasswd - Manage user files for basic authentication
httxt2dbm - Generate dbm files for use with RewriteMap
logresolve - Resolve IP-addresses to hostnames in Apache log files
log_server_status - Log periodic status summaries
rotatelogs - Piped logging program to rotate Apachelogs
split-logfile - Split up multi-vhost logfiles L oL
suexec - Switch user before executing external programso

Other Programs e

Apache Miscellaneous Documentation

Apache Miscellaneous Documentation L. e
Apache Performance Tuning Lo
Performance Scaling
Security Tips o e e
Relevant Standards

Password Formats e

258

265
266
267
275
281
284
292

293
294
295
297
301
303
307
315
317
318
319
321
324
325
328
329
330
331
334
335
336

vi CONTENTS
10 Apache modules 375
10.1 Terms Used to Describe Modules 376
10.2 Terms Used to Describe Directives e 377
10.3 Apache Module core 380
10.4 Apache Module mod_access.compat 440
10.5 Apache Module mod_actions 445
10.6 Apache Module mod_alias. 447
10.7 Apache Module mod_allowhandlers 454
10.8 Apache Module mod_allowmethods 455
10.9 Apache Module mod_asis L 456
10.10 Apache Module mod_auth_basic 458
10.11 Apache Module mod_auth_digest 462
10.12 Apache Module mod_auth_form 466
10.13 Apache Module mod_authn_anon 477
10.14 Apache Module mod_authn_core 480
10.15 Apache Module mod_authn-dbd 484
10.16 Apache Module mod_authn.dbm 487
10.17 Apache Module mod_authn_file L 489
10.18 Apache Module mod_authn_socache 491
10.19 Apache Module mod_authnz_fegi L 494
10.20 Apache Module mod_authnz_ldap L 501
10.21 Apache Module mod_authz_core 519
10.22 Apache Module mod_authz_dbd 527
10.23 Apache Module mod_authz_.dbm L 532
10.24 Apache Module mod_authz_groupfile 534
10.25 Apache Module mod_authz_host L 536
10.26 Apache Module mod_authz_owner 539
10.27 Apache Module mod_authz_user 541
10.28 Apache Module mod_autoindex oo 542
10.29 Apache Module mod_buffer L o 554
10.30 Apache Module mod_cache 555
10.31 Apache Module mod_cache disk 570
10.32 Apache Module mod_cache_socache 574
10.33 Apache Module mod_cern-meta o 578
1034 Apache Modulemod_cgi 580
1035 Apache Modulemod_cgid 583
10.36 Apache Module mod_charset_lite 585

CONTENTS vii

10.37
10.38
10.39
10.40
10.41
10.42
10.43
10.44
10.45
10.46
10.47
10.48
10.49
10.50
10.51
10.52
10.53
10.54
10.55
10.56
10.57
10.58
10.59
10.60
10.61
10.62
10.63
10.64
10.65
10.66
10.67
10.68
10.69
10.70
10.71
10.72
10.73

Apache Module mod_data 588
Apache Module mod_dav L 589
Apache Module mod_dav_fs 592
Apache Module mod_dav_lock 593
Apache Module mod_dbd 594
Apache Module mod_deflate 599
Apache Module mod_dialup 606
Apache Module mod_dir 607
Apache Module mod_dumpio 612
Apache Module mod_echo 614
Apache Module mod_env L 615
Apache Module mod_example_hooks 617
Apache Module mod_expires L e 619
Apache Module mod_ext_filter L 622
Apache Module mod_file_cache 626
Apache Module mod_filter 629
Apache Module mod_firehose 637
Apache Module mod_headers 641
Apache Module mod_heartbeat 647
Apache Module mod_heartmonitor 648
Apache Module mod_http2 650
Apache Module mod_ident L 661
Apache Module mod_imagemap e 663
Apache Module mod_include 667
Apache Module mod_info 680
Apache Module mod_isapi 683
Apache Module mod journald Lo 687
Apache Module mod_lbmethod_bybusyness 0oL 688
Apache Module mod_lbmethod_byrequests 0oL 689
Apache Module mod_lbmethod_bytraffic 000 691
Apache Module mod_lbmethod_heartbeat 0oL 692
Apache Modulemod_Idap 693
Apache Module mod_log_config 705
Apache Module mod_log.debug 712
Apache Module mod_log forensic L e 714
Apache Module mod_logio 716

Apache Module mod_lua 718

viii

10.74
10.75
10.76
10.77
10.78
10.79
10.80
10.81
10.82
10.83
10.84
10.85
10.86
10.87
10.88
10.89
10.90
10.91
10.92
10.93
10.94
10.95
10.96
10.97
10.98
10.99
10.100
10.101
10.102
10.103
10.104
10.105
10.106
10.107
10.108
10.109
10.110

CONTENTS

Apache Module mod_macro e 745
Apache Module mod-mime 749
Apache Module mod_mime_magic 762
Apache Module mod_negotiation 766
Apache Module mod_nw_ssl 770
Apache Module mod_policy 771
Apache Module mod_privileges 781
Apache Module mod_proxy 787
Apache Module mod_proxy.-ajp« o oo e 815
Apache Module mod_proxy_balancer 824
Apache Module mod_proxy_connect 828
Apache Module mod_proxXy_express v i e e e 830
Apache Module mod_proxy_fegi 833
Apache Module mod_proxy_fdpass L 836
Apache Module mod_proxy ftp 837
Apache Module mod_proxy_-hcheck 840
Apache Module mod_proxy_-html L 844
Apache Module mod_proxy_http 850
Apache Module mod_proxy_http2 852
Apache Module mod_proXy_SCgi o it e e e 853
Apache Module mod_proxy_wstunnel L L o 856
Apache Module mod_ratelimit 858
Apache Module mod_reflector 859
Apache Module mod_remoteip 860
Apache Module mod_reqtimeout e 864
Apache Module mod_request e e 866
Apache Module mod_rewrite Lo e 867
Apache Module mod_sed 881
Apache Module mod_session 883
Apache Module mod_session_cookie Lo 890
Apache Module mod_session_Crypto 893
Apache Module mod_session.dbdo 0oL 897
Apache Module mod_setenvif oL 902
Apache Module mod_slotmem _plain L oo 906
Apache Module mod_slotmem_shm 0 0L oL 907
Apache Modulemod_so 908

Apache Module mod_socache.dbm o oL oo 910

CONTENTS ix

10.111 Apache Module mod_socache dc 911
10.112 Apache Module mod_socache_memcache 912
10.113 Apache Module mod_socache_shmeb L 913
10.114 Apache Module mod_speling 914
10.115 Apache Module mod_ssl 916
10.116 Apache Module mod_ssl_ct 955
10.117 Apache Module mod_status it e e e e 962
10.118 Apache Module mod_substitute L 964
10.119 Apache Module mod_suexec o i i i i e e e 967
10.120 Apache Module mod_syslog e 968
10.121 Apache Module mod_systemd L 969
10.122 Apache Module mod_unique_id oL o 970
10.123 Apache Module mod_unixd e 972
10.124 Apache Module mod_userdir 975
10.125 Apache Module mod_usertrack e 977
10.126 Apache Module mod_version e e 980
10.127 Apache Module mod_vhost_alias 982
10.128 Apache Module mod_watchdog 986
10.129 Apache Module mod_xml2enc Lo o 987
10.130 Apache Module mpm_common e 990
10.131 Apache Module event L 1001
10.132 Apache Module mpm_netware it e e e e e e e 1006
10.133 Apache Module mpmt_0S2 e e e e 1008
10.134 Apache Module prefork 1009
10.135 Apache Module mpm._winnt oL 1012
10.136 Apache Module worker 1014
11 Developer Documentation 1017
11.1 Developer Documentation for the Apache HTTP Server2.4 1018
11.2 Apache 1.3 APInotes e e e 1019
11.3 API Changes in Apache HTTP Server 2.4 since 2.2 1035
114 Developing modules for the Apache HTTP Server2.4 1042
11.5 Documenting code in Apache 2.4 1070
11.6 Hook Functions in the Apache HTTP Server 2.x 1071
11.7 Converting Modules from Apache 1.3to Apache 2.0 1074
11.8 Request Processing in the Apache HTTP Server2.x 1078
11.9 How filters work in Apache 2.0 e 1081
11.10 Guide to writing output filters oL 1084

CONTENTS

11.11 Apache HTTP Server 2.x Thread Safety Issues 1091

12 Glossary and Index

12.1 Glossary . . .

12.2 Module Index

12.3 Directive Quick Reference 1106

Chapter 1

Release Notes

2 CHAPTER 1. RELEASE NOTES

1.1 Upgrading to 2.4 from 2.2

In order to assist folks upgrading, we maintain a document describing information critical to existing Apache HTTP
Server users. These are intended to be brief notes, and you should be able to find more information in either the New
Features (p. 8) document, or in the src/CHANGES file. Application and module developers can find a summary of
API changes in the API updates (p. 1035) overview.

This document describes changes in server behavior that might require you to change your configuration or how you
use the server in order to continue using 2.4 as you are currently using 2.2. To take advantage of new features in 2.4,
see the New Features document.

This document describes only the changes from 2.2 to 2.4. If you are upgrading from version 2.0, you should also
consult the 2.0 to 2.2 upgrading document.'

See also

e Overview of new features in Apache HTTP Server 2.4 (p. 8)

Compile-Time Configuration Changes

The compilation process is very similar to the one used in version 2.2. Your old configure command line (as found
inbuild/config.nice in the installed server directory) can be used in most cases. There are some changes in
the default settings. Some details of changes:

e These modules have been removed: mod_authn_default, mod_authz_default, mod_mem_cache. If you were using
mod_mem_cache in 2.2, look at MOD_CACHE_DISK in 2.4.

e All load balancing implementations have been moved to individual, self-contained mod_proxy submodules, e.g.
MOD_LBMETHOD_BYBUSYNESS. You might need to build and load any of these that your configuration uses.

e Platform support has been removed for BeOS, TPF, and even older platforms such as A/UX, Next, and Tandem.
These were believed to be broken anyway.

e configure: dynamic modules (DSO) are built by default

e configure: By default, only a basic set of modules is loaded. The other LOADMODULE directives are commented
out in the configuration file.

e configure: the "most" module set gets built by default

e configure: the "reallyall" module set adds developer modules to the "all" set

Run-Time Configuration Changes

There have been significant changes in authorization configuration, and other minor configuration changes, that could
require changes to your 2.2 configuration files before using them for 2.4.

Authorization

Any configuration file that uses authorization will likely need changes.

You should review the Authentication, Authorization and Access Control Howto (p. 227) , especially the section
Beyond just authorization (p. 227) which explains the new mechanisms for controlling the order in which the autho-
rization directives are applied.

Uhttp://httpd.apache.org/docs/2.2/upgrading.html

http://httpd.apache.org/docs/2.2/upgrading.html

1.1. UPGRADING TO 2.4 FROM 2.2 3

Directives that control how authorization modules respond when they don’t match the authenticated user have been
removed: This includes AuthzZLDAPAuthoritative, AuthzDBDAuthoritative, AuthzDBM Authoritative, AuthzGroup-
FileAuthoritative, AuthzUserAuthoritative, and AuthzOwnerAuthoritative. These directives have been replaced by the
more expressive REQUIREANY, REQUIRENONE, and REQUIREALL.

If you use MOD_AUTHZ_DBM, you must port your configuration to use Require dbm-group ... in place of
Require group

Access control

In 2.2, access control based on client hostname, IP address, and other characteristics of client requests was done using
the directives ORDER, ALLOW, DENY, and SATISFY.

In 2.4, such access control is done in the same way as other authorization checks, using the new module
MOD_AUTHZ_HOST. The old access control idioms should be replaced by the new authentication mechanisms, al-
though for compatibility with old configurations, the new module MOD_ACCESS_COMPAT is provided.

:Mixing old and new directives
Mixing old directives like ORDER, ALLOW or DENY with new ones like REQUIRE is techni-
cally possible but discouraged. MOD_ACCESS_COMPAT was created to support configurations
containing only old directives to facilitate the 2.4 upgrade. Please check the examples below
to get a better idea about issues that might arise.

Here are some examples of old and new ways to do the same access control.
In this example, all requests are denied.
2.2 configuration:

Order deny,allow
Deny from all

2.4 configuration:

Require all denied
In this example, all requests are allowed.

2.2 configuration:

Order allow,deny
Allow from all

2.4 configuration:

Require all granted
In the following example, all hosts in the example.org domain are allowed access; all other hosts are denied access.

2.2 configuration:

Order Deny,Allow
Deny from all
Allow from example.org

4 CHAPTER 1. RELEASE NOTES

2.4 configuration:

Require host example.org
In the following example, mixing old and new directives leads to unexpected results.

Mixing old and new directives: NOT WORKING AS EXPECTED
DocumentRoot "/var/www/html"

<Directory "/">
AllowOverride None
Order deny,allow
Deny from all

</Directory>

<Location "/server-status">
SetHandler server-status
Require 127.0.0.1
</Location>

access.log - GET /server-status 403 127.0.0.1
error.log - AHO01797: client denied by server configuration: /var/www/html/server-status

Why httpd denies access to servers-status even if the configuration seems to allow it? Because MOD_ACCESS_COMPAT
directives take precedence over the MOD_AUTHZ_HOST one in this configuration merge (p. 35) scenario.

This example conversely works as expected:

Mixing old and new directives: WORKING AS EXPECTED
DocumentRoot "/var/www/html"

<Directory "/">
AllowOverride None
Require all denied

</Directory>

<Location "/server-status">
SetHandler server-status
Order deny,allow
Deny from all
Allow From 127.0.0.1
</Location>

access.log - GET /server-status 200 127.0.0.1

So even if mixing configuration is still possible, please try to avoid it when upgrading: either keep old directives and
then migrate to the new ones on a later stage or just migrate everything in bulk.

Other configuration changes

Some other small adjustments may be necessary for particular configurations as discussed below.

e MAXREQUESTSPERCHILD has been renamed to MAXCONNECTIONSPERCHILD, describes more accurately
what it does. The old name is still supported.

1.1. UPGRADING TO 2.4 FROM 2.2 5

e MAXCLIENTS has been renamed to MAXREQUESTWORKERS, which describes more accurately what it does.
For async MPMs, like EVENT, the maximum number of clients is not equivalent than the number of worker
threads. The old name is still supported.

e The DEFAULTTYPE directive no longer has any effect, other than to emit a warning if it’s used with any value
other than none. You need to use other configuration settings to replace it in 2.4.

e ALLOWOVERRIDE now defaults to None.
e ENABLESENDFILE now defaults to Off.
e FILEETAG now defaults to "MTime Size" (without INode).

e MOD_DAV_FS: The format of the DAVLOCKDB file has changed for systems with inodes. The old
DAVLOCKDB file must be deleted on upgrade.

e KEEPALIVE only accepts values of On or Of £. Previously, any value other than "Off" or "0" was treated as
n On n .

e Directives AcceptMutex, LockFile, RewriteLock, SSLMutex, SSLStaplingMutex, and WatchdogMutexPath
have been replaced with a single MUTEX directive. You will need to evaluate any use of these removed di-
rectives in your 2.2 configuration to determine if they can just be deleted or will need to be replaced using
MUTEX.

e MOD_CACHE: CACHEIGNOREURLSESSIONIDENTIFIERS now does an exact match against the query string
instead of a partial match. If your configuration was using partial strings, e.g. using sessionid to match
/someapplication/image.gif; jsessionid=123456789, then you will need to change to the full
string jsessionid.

e MOD_CACHE: The second parameter to CACHEENABLE only matches forward proxy content if it begins with
the correct protocol. In 2.2 and earlier, a parameter of ’/” matched all content.

e MOD_LDAP: LDAPTRUSTEDCLIENTCERT is now consistently a per-directory setting only. If you use this
directive, review your configuration to make sure it is present in all the necessary directory contexts.

e MOD_FILTER: FILTERPROVIDER syntax has changed and now uses a boolean expression to determine if a filter
is applied.

e MOD_INCLUDE:

— The #if expr element now uses the new expression parser (p. 99) . The old syntax can be restored with
the new directive SSILEGACYEXPRPARSER.

— An SSI* config directive in directory scope no longer causes all other per-directory SSI* directives to be
reset to their default values.

e MOD_CHARSET_LITE: The DebugLevel option has been removed in favour of per-module LOGLEVEL con-
figuration.

e MOD_EXT_FILTER: The DebugLevel option has been removed in favour of per-module LOGLEVEL configu-
ration.

e MOD_PROXY_SCGI: The default setting for PATH_INF O has changed from httpd 2.2, and some web applications
will no longer operate properly with the new PATH_INFO setting. The previous setting can be restored by
configuring the proxy—-scgi-pathinfo variable.

e MOD_SSL: CRL based revocation checking now needs to be explicitly configured through SSLCAREVOCA-
TIONCHECK.

e MOD_SUBSTITUTE: The maximum line length is now limited to 1MB.
e MOD_REQTIMEOUT: If the module is loaded, it will now set some default timeouts.
e MOD_DUMPIO: DUMPIOLOGLEVEL is no longer supported. Data is always logged at LOGLEVEL trace?.

e On Unix platforms, piped logging commands configured using either ERRORLOG or CUSTOMLOG were in-
voked using /bin/sh —c in 2.2 and earlier. In 2.4 and later, piped logging commands are executed directly.
To restore the old behaviour, see the piped logging documentation (p. 56) .

6 CHAPTER 1. RELEASE NOTES

Misc Changes

e MOD_AUTOINDEX: will now extract titles and display descriptions for .xhtml files, which were previously
ignored.

e MOD_SSL: The default format of the «_DN variables has changed. The old format can still be used with the
new LegacyDNStringFormat argument to SSLOPTIONS. The SSLv2 protocol is no longer supported.
SSLPROXYCHECKPEERCN and SSLPROXYCHECKPEEREXPIRE now default to On, causing proxy requests
to HTTPS hosts with bad or outdated certificates to fail with a 502 status code (Bad gateway)

e htpasswd now uses MDS5 hash by default on all platforms.

e The NAMEVIRTUALHOST directive no longer has any effect, other than to emit a warning. Any address/port
combination appearing in multiple virtual hosts is implicitly treated as a name-based virtual host.

e MOD_DEFLATE will now skip compression if it knows that the size overhead added by the compression is larger
than the data to be compressed.

e Multi-language error documents from 2.2.x may not work unless they are adjusted to the new syntax of
MOD_INCLUDE’s #1if expr= element or the directive SSILEGACYEXPRPARSER is enabled for the directory
containing the error documents.

e The functionality provided by mod_authn_alias in previous versions (i.e., the AUTHNPROVIDERALIAS
directive) has been moved into MOD_AUTHN_CORE.

e MOD_CGID uses the servers TIMEOUT to limit the length of time to wait for CGI output. This timeout can be
overridden with CGIDSCRIPTTIMEOUT.

Third Party Modules

All modules must be recompiled for 2.4 before being loaded.

Many third-party modules designed for version 2.2 will otherwise work unchanged with the Apache HTTP Server
version 2.4. Some will require changes; see the API update (p. 1035) overview.

Common problems when upgrading

e Startup errors:

— Invalid command ’User’, perhaps misspelled or defined by a module not
included in the server configuration -load module MOD_UNIXD

— Invalid command ’'Require’, perhaps misspelled or defined by a module
not included in the server configuration, or Invalid command ’Order’,
perhaps misspelled or defined by a module not included in the server
configuration - load module MOD_ACCESS_COMPAT, or update configuration to 2.4 authorization

directives.

— Ignoring deprecated use of DefaultType in line NN of
/path/to/httpd.conf - remove DEFAULTTYPE and replace with other configuration
settings.

— Invalid command ’AddOutputFilterByType’, perhaps misspelled or defined
by a module not included in the server configuration - ADDOUTPUTFILTER-
BYTYPE has moved from the core to mod_filter, which must be loaded.

e Errors serving requests:

— configuration error: couldn’t check user: /path - load module
MOD_AUTHN_CORE.

1.1. UPGRADING TO 2.4 FROM 2.2 7

— .htaccess files aren’t being processed - Check for an appropriate ALLOWOVERRIDE directive; the
default changed to None in 2.4.

8 CHAPTER 1. RELEASE NOTES
1.2 Overview of new features in Apache HTTP Server 2.4

This document describes some of the major changes between the 2.2 and 2.4 versions of the Apache HTTP Server.
For new features since version 2.0, see the 2.2 new features (p. 12) document.

Core Enhancements

Run-time Loadable MPMs Multiple MPMs can now be built as loadable modules (p. 90) at compile time. The MPM
of choice can be configured at run time via LOADMODULE directive.

Event MPM The Event MPM (p. 1001) is no longer experimental but is now fully supported.
Asynchronous support Better support for asynchronous read/write for supporting MPMs and platforms.

Per-module and per-directory LogLevel configuration The LOGLEVEL can now be configured per module and per
directory. New levels t racel to t race8 have been added above the debug log level.

Per-request configuration sections <IF>, <ELSEIF>, and <ELSE>> sections can be used to set the configuration
based on per-request criteria.

General-purpose expression parser A new expression parser allows to specify complex conditions (p. 99) using a
common syntax in directives like SETENVIFEXPR, REWRITECOND, HEADER, <IF>, and others.

KeepAliveTimeout in milliseconds It is now possible to specify KEEPALIVETIMEOUT in milliseconds.
NameVirtualHost directive No longer needed and is now deprecated.

Override Configuration The new ALLOWOVERRIDELIST directive allows more fine grained control which direc-
tives are allowed in . htaccess files.

Conlfig file variables It is now possible to DEFINE variables in the configuration, allowing a clearer representation if
the same value is used at many places in the configuration.

Reduced memory usage Despite many new features, 2.4.x tends to use less memory than 2.2.x.

New Modules

MOD_PROXY_FCGI FastCGI Protocol backend for MOD_PROXY
MOD_PROXY_SCGI SCGI Protocol backend for MOD_PROXY
MOD_PROXY_EXPRESS Provides dynamically configured mass reverse proxies for MOD_PROXY

MOD_REMOTEIP Replaces the apparent client remote IP address and hostname for the request with the IP address
list presented by a proxies or a load balancer via the request headers.

MOD_HEARTMONITOR, MOD_LBMETHOD _HEARTBEAT Allow MOD_PROXY_BALANCER to base loadbalancing
decisions on the number of active connections on the backend servers.

MOD_PROXY_HTML Formerly a third-party module, this supports fixing of HTML links in a reverse proxy situation,
where the backend generates URLs that are not valid for the proxy’s clients.

MOD_SED An advanced replacement of MOD_SUBSTITUTE, allows to edit the response body with the full power of
sed.

MOD_AUTH_FORM Enables form-based authentication.

MOD_SESSION Enables the use of session state for clients, using cookie or database storage.

1.2. OVERVIEW OF NEW FEATURES IN APACHE HTTP SERVER 2.4 9

MOD_ALLOWMETHODS New module to restrict certain HTTP methods without interfering with authentication or
authorization.

MOD_LUA Embeds the Lua® language into httpd, for configuration and small business logic functions. (Experimental)

MOD_LOG_DEBUG Allows the addition of customizable debug logging at different phases of the request processing.

MOD_BUFFER Provides for buffering the input and output filter stacks

MOD_DATA Convert response body into an RFC2397 data URL

MOD_RATELIMIT Provides Bandwidth Rate Limiting for Clients

MOD_REQUEST Provides Filters to handle and make available HTTP request bodies

MOD_REFLECTOR Provides Reflection of a request body as a response via the output filter stack.

MOD_SLOTMEM_SHM Provides a Slot-based shared memory provider (ala the scoreboard).

MOD_XML2ENC Formerly a third-party module, this supports internationalisation in libxml2-based (markup-aware)
filter modules.

MOD_MACRO (available since 2.4.5) Provide macros within configuration files.
MOD_PROXY_WSTUNNEL (available since 2.4.5) Support web-socket tunnels.

MOD_AUTHNZ _FCGI (available since 2.4.10) Enable FastCGI authorizer applications to authenticate and/or autho-
rize clients.

MOD_HTTP2 (available since 2.4.17) Support for the HTTP/2 transport layer.

Module Enhancements

MOD_SSL. MOD_SSL can now be configured to use an OCSP server to check the validation status of a client certificate.
The default responder is configurable, along with the decision on whether to prefer the responder designated in
the client certificate itself.

MOD_SSL now also supports OCSP stapling, where the server pro-actively obtains an OCSP verification of its
certificate and transmits that to the client during the handshake.

MOD_SSL can now be configured to share SSL Session data between servers through memcached
EC keys are now supported in addition to RSA and DSA.
Support for TLS-SRP (available in 2.4.4 and later).

MOD_PROXY The PROXYPASS directive is now most optimally configured within a LOCATION or LOCATIONMATCH
block, and offers a significant performance advantage over the traditional two-parameter syntax when present
in large numbers. The source address used for proxy requests is now configurable. Support for Unix domain
sockets to the backend (available in 2.4.7 and later).

MOD_PROXY_BALANCER More runtime configuration changes for BalancerMembers via balancer-manager
Additional BalancerMembers can be added at runtime via balancer-manager
Runtime configuration of a subset of Balancer parameters

BalancerMembers can be set to ’Drain’ so that they only respond to existing sticky sessions, allowing them to
be taken gracefully offline.

Balancer settings can be persistent after restarts.

Zhttp://www.lua.org/

http://www.lua.org/

10 CHAPTER 1. RELEASE NOTES

MOD_CACHE The MOD_CACHE CACHE filter can be optionally inserted at a given point in the filter chain to provide
fine control over caching.

MOD_CACHE can now cache HEAD requests.
Where possible, MOD_CACHE directives can now be set per directory, instead of per server.

The base URL of cached URLSs can be customised, so that a cluster of caches can share the same endpoint URL
prefix.

MOD_CACHE is now capable of serving stale cached data when a backend is unavailable (error 5xx).
MOD_CACHE can now insert HIT/MISS/REVALIDATE into an X-Cache header.

MOD_INCLUDE Support for the onerror’ attribute within an ’include’ element, allowing an error document to be
served on error instead of the default error string.

MOD_CGI, MOD_INCLUDE, MOD_ISAPI, ... Translation of headers to environment variables is more strict than before
to mitigate some possible cross-site-scripting attacks via header injection. Headers containing invalid characters
(including underscores) are now silently dropped. Environment Variables in Apache (p. 92) has some pointers
on how to work around broken legacy clients which require such headers. (This affects all modules which use
these environment variables.)

MOD_AUTHZ_CORE Authorization Logic Containers Advanced authorization logic may now be specified using the
REQUIRE directive and the related container directives, such as <REQUIREALL>.

MOD_REWRITE MOD_REWRITE adds the [QSD] (Query String Discard) and [END] flags for REWRITERULE to
simplify common rewriting scenarios. Adds the possibility to use complex boolean expressions in REWRITE-
CoOND. Allows the use of SQL queries as REWRITEMAP functions.

MOD_LDAP, MOD_AUTHNZ_LDAP MOD_AUTHNZ_LDAP adds support for nested groups. MOD_LDAP adds LDAP-
CONNECTIONPOOLTTL, LDAPTIMEOUT, and other improvements in the handling of timeouts. This is espe-
cially useful for setups where a stateful firewall drops idle connections to the LDAP server. MOD_LDAP adds
LDAPLIBRARYDEBUG to log debug information provided by the used LDAP toolkit.

MOD_INFO MOD_INFO can now dump the pre-parsed configuration to stdout during server startup.

MOD_AUTH_BASIC New generic mechanism to fake basic authentication (available in 2.4.5 and later).

Program Enhancements

fcgistarter New FastCGI daemon starter utility

htcacheclean Current cached URLs can now be listed, with optional metadata included. Allow explicit deletion
of individual cached URLs from the cache. File sizes can now be rounded up to the given block size, making the
size limits map more closely to the real size on disk. Cache size can now be limited by the number of inodes,
instead of or in addition to being limited by the size of the files on disk.

rotatelogs May now create a link to the current log file. May now invoke a custom post-rotate script.

htpasswd, htdbm Support for the berypt algorithm (available in 2.4.4 and later).

Documentation

mod_rewrite The MOD_REWRITE documentation has been rearranged and almost completely rewritten, with a focus
on examples and common usage, as well as on showing you when other solutions are more appropriate. The
Rewrite Guide (p. 146) is now a top-level section with much more detail and better organization.

mod_ssl The MOD_SSL documentation has been greatly enhanced, with more examples at the getting started level, in
addition to the previous focus on technical details.

1.2. OVERVIEW OF NEW FEATURES IN APACHE HTTP SERVER 2.4 11

Caching Guide The Caching Guide (p. 43) has been rewritten to properly distinguish between the RFC2616
HTTP/1.1 caching features provided by MOD_CACHE, and the generic key/value caching provided by the
socache (p. 114) interface, as well as to cover specialised caching provided by mechanisms such as
MOD_FILE_CACHE.

Module Developer Changes

Check Configuration Hook Added A new hook, check_config, has been added which runs between the
pre_config and open_logs hooks. It also runs before the test_config hook when the —t option is
passed to httpd. The check_config hook allows modules to review interdependent configuration direc-
tive values and adjust them while messages can still be logged to the console. The user can thus be alerted to
misconfiguration problems before the core open_1logs hook function redirects console output to the error log.

Expression Parser Added We now have a general-purpose expression parser, whose API is exposed in ap_expr.h.
This is adapted from the expression parser previously implemented in MOD_SSL.

Authorization Logic Containers Authorization modules now register as a provider, via ap_register_auth_provider(),
to support advanced authorization logic, such as <REQUIREALL>.

Small-Object Caching Interface The ap_socache.h header exposes a provider-based interface for caching small data
objects, based on the previous implementation of the MOD_SSL session cache. Providers using a shared-memory
cyclic buffer, disk-based dbm files, and a memcache distributed cache are currently supported.

Cache Status Hook Added The MOD_CACHE module now includes a new cache_status hook, which is called
when the caching decision becomes known. A default implementation is provided which adds an optional
X—-Cache and X-Cache-Detail header to the response.

The developer documentation contains a detailed list of API changes (p. 1035) .

12 CHAPTER 1. RELEASE NOTES
1.3 Overview of new features in Apache HTTP Server 2.2

This document describes some of the major changes between the 2.0 and 2.2 versions of the Apache HTTP Server.
For new features since version 1.3, see the 2.0 new features (p. 15) document.

Core Enhancements

Authn/Authz The bundled authentication and authorization modules have been refactored. The new
mod_authn_alias(already removed from 2.3/2.4) module can greatly simplify certain authentication configu-
rations. See module name changes, and the developer changes for more information about how these changes
affects users and module writers.

Caching MOD_CACHE, MOD_CACHE_DISK, and mod_mem_cache(already removed from 2.3/2.4) have undergone a
lot of changes, and are now considered production-quality. ht cacheclean has been introduced to clean up
MOD_CACHE_DISK setups.

Configuration The default configuration layout has been simplified and modularised. Configuration snippets which
can be used to enable commonly-used features are now bundled with Apache, and can be easily added to the
main server config.

Graceful stop The PREFORK, WORKER and EVENT MPMs now allow httpd to be shutdown gracefully via the
graceful-stop (p. 29) signal. The GRACEFULSHUTDOWNTIMEOUT directive has been added to specify
an optional timeout, after which httpd will terminate regardless of the status of any requests being served.

Proxying The new MOD_PROXY_BALANCER module provides load balancing services for MOD_PROXY. The
new MOD_PROXY_AJP module adds support for the Apache JServ Protocol version 1.3 used by
Apache Tomcat>.

Regular Expression Library Updated Version 5.0 of the Perl Compatible Regular Expression Library* (PCRE) is
now included. httpd can be configured to use a system installation of PCRE by passing the ——with-pcre
flag to configure.

Smart Filtering MOD_FILTER introduces dynamic configuration to the output filter chain. It enables filters to be
conditionally inserted, based on any Request or Response header or environment variable, and dispenses with
the more problematic dependencies and ordering problems in the 2.0 architecture.

Large File Support httpd is now built with support for files larger than 2GB on modern 32-bit Unix systems.
Support for handling >2GB request bodies has also been added.

Event MPM The EVENT MPM uses a separate thread to handle Keep Alive requests and accepting connections. Keep
Alive requests have traditionally required httpd to dedicate a worker to handle it. This dedicated worker could
not be used again until the Keep Alive timeout was reached.

SQL Database Support MOD_DBD, together with the apr_dbd framework, brings direct SQL support to modules
that need it. Supports connection pooling in threaded MPMs.

Module Enhancements

Authn/Authz Modules in the aaa directory have been renamed and offer better support for digest authentication.
For example, mod_auth is now split into MOD_AUTH_BASIC and MOD_AUTHN_FILE; mod_auth_dbm is
now called MOD_AUTHN_DBM; mod_access has been renamed MOD_AUTHZ_HOST. There is also a new
mod_authn_alias(already removed from 2.3/2.4) module for simplifying certain authentication configurations.

3http://tomcat.apache.org/
“http://www.pcre.org/

http://tomcat.apache.org/
http://www.pcre.org/

1.3. OVERVIEW OF NEW FEATURES IN APACHE HTTP SERVER 2.2 13

MOD_AUTHNZ_LDAP This module is a port of the 2.0 mod_auth_ldap module to the 2.2 Authn/Authz frame-
work. New features include using LDAP attribute values and complicated search filters in the REQUIRE direc-
tive.

MOD_AUTHZ_OWNER A new module that authorizes access to files based on the owner of the file on the file system

MOD_VERSION A new module that allows configuration blocks to be enabled based on the version number of the
running server.

MOD_INFO Added a new ?config argument which will show the configuration directives as parsed by Apache,
including their file name and line number. The module also shows the order of all request hooks and additional
build information, similar to httpd -V.

MOD_SSL Added a support for REC 2817°, which allows connections to upgrade from clear text to TLS encryption.

MOD_IMAGEMAP mod_imap has been renamed to MOD_IMAGEMAP to avoid user confusion.

Program Enhancements

httpd A new command line option —M has been added that lists all modules that are loaded based on the current
configuration. Unlike the —1 option, this list includes DSOs loaded via MOD_SO.

httxt2dbm A new program used to generate dbm files from text input, for use in REWRITEMAP with the dlbm map
type.

Module Developer Changes

APR 1.0 API Apache 2.2 uses the APR 1.0 APIL. All deprecated functions and symbols have been removed from APR
and APR-Ut 1 1. For details, see the APR Website®.

Authn/Authz The bundled authentication and authorization modules have been renamed along the following lines:

e mod_auth_x -> Modules that implement an HTTP authentication mechanism

e mod-authn_» -> Modules that provide a backend authentication provider

e mod_authz_x -> Modules that implement authorization (or access)

e mod_authnz_x -> Module that implements both authentication & authorization

There is a new authentication backend provider scheme which greatly eases the construction of new authentica-
tion backends.

Connection Error Logging A new function, ap_log_cerror has been added to log errors that occur with the
client’s connection. When logged, the message includes the client IP address.

Test Configuration Hook Added A new hook, test_config has been added to aid modules that want to execute
special code only when the user passes —t to httpd.

Set Threaded MPM’s Stacksize A new directive, THREADSTACKSIZE has been added to set the stack size on all
threaded MPMs. This is required for some third-party modules on platforms with small default thread stack
size.

Protocol handling for output filters In the past, every filter has been responsible for ensuring that it generates the
correct response headers where it affects them. Filters can now delegate common protocol management to
MOD_FILTER, using the ap_register_output_filter_protocol orap_-filter_protocol calls.

Shttp://www.ietf.org/rfc/rfc2817.txt
Ohttp://apr.apache.org/

http://www.ietf.org/rfc/rfc2817.txt
http://apr.apache.org/

14 CHAPTER 1. RELEASE NOTES

Monitor hook added Monitor hook enables modules to run regular/scheduled jobs in the parent (root) process.

Regular expression API changes The pcreposix.h header is no longer available; it is replaced by the new
ap-regex.h header. The POSIX.2 regex.h implementation exposed by the old header is now available
under the ap_ namespace from ap_regex.h. Calls to regcomp, regexec and so on can be replaced by
calls to ap_regcomp, ap_regexec.

DBD Framework (SQL Database API) With Apache 1.x and 2.0, modules requiring an SQL backend had to take
responsibility for managing it themselves. Apart from reinventing the wheel, this can be very inefficient, for
example when several modules each maintain their own connections.

Apache 2.1 and later provides the ap_dbod API for managing database connections (including optimised strate-
gies for threaded and unthreaded MPMs), while APR 1.2 and later provides the apr_dbd API for interacting
with the database.

New modules SHOULD now use these APIs for all SQL database operations. Existing applications SHOULD
be upgraded to use it where feasible, either transparently or as a recommended option to their users.

1.4. OVERVIEW OF NEW FEATURES IN APACHE HTTP SERVER 2.0 15

1.4 Overview of new features in Apache HTTP Server 2.0

This document describes some of the major changes between the 1.3 and 2.0 versions of the Apache HTTP Server.

See also

e Upgrading to 2.0 from 1.3 (p. 2)

Core Enhancements

Unix Threading On Unix systems with POSIX threads support, Apache httpd can now run in a hybrid multiprocess,
multithreaded mode. This improves scalability for many, but not all configurations.

New Build System The build system has been rewritten from scratch to be based on autoconf and 1ibtool. This
makes Apache httpd’s configuration system more similar to that of other packages.

Multiprotocol Support Apache HTTP Server now has some of the infrastructure in place to support serving multiple
protocols. MOD_ECHO has been written as an example.

Better support for non-Unix platforms Apache HTTP Server 2.0 is faster and more stable on non-Unix platforms
such as BeOS, OS/2, and Windows. With the introduction of platform-specific multi-processing modules (p. 90)
(MPMs) and the Apache Portable Runtime (APR), these platforms are now implemented in their native API,
avoiding the often buggy and poorly performing POSIX-emulation layers.

New Apache httpd API The API for modules has changed significantly for 2.0. Many of the module-ordering/-
priority problems from 1.3 should be gone. 2.0 does much of this automatically, and module ordering is now
done per-hook to allow more flexibility. Also, new calls have been added that provide additional module capa-
bilities without patching the core Apache HTTP Server.

IPv6 Support On systems where IPv6 is supported by the underlying Apache Portable Runtime library, Apache httpd
gets IPv6 listening sockets by default. Additionally, the LISTEN, NAMEVIRTUALHOST, and VIRTUALHOST
directives support IPv6 numeric address strings (e.g., "Listen [2001:db8::1]:8080").

Filtering Apache httpd modules may now be written as filters which act on the stream of content as it is delivered to
or from the server. This allows, for example, the output of CGI scripts to be parsed for Server Side Include di-
rectives using the INCLUDES filter in MOD_INCLUDE. The module MOD_EXT_FILTER allows external programs
to act as filters in much the same way that CGI programs can act as handlers.

Multilanguage Error Responses Error response messages to the browser are now provided in several languages,
using SSI documents. They may be customized by the administrator to achieve a consistent look and feel.

Simplified configuration Many confusing directives have been simplified. The often confusing Port and
BindAddress directives are gone; only the LISTEN directive is used for IP address binding; the SERVER-
NAME directive specifies the server name and port number only for redirection and vhost recognition.

Native Windows NT Unicode Support Apache httpd 2.0 on Windows NT now uses utf-8 for all filename encodings.
These directly translate to the underlying Unicode file system, providing multilanguage support for all Windows
NT-based installations, including Windows 2000 and Windows XP. This support does not extend to Windows
95, 98 or ME, which continue to use the machine’s local codepage for filesystem access.

Regular Expression Library Updated Apache httpd 2.0 includes the Perl Compatible Regular Expression Library’
(PCRE). All regular expression evaluation now uses the more powerful Perl 5 syntax.

7http://www.pcre.org/

http://www.pcre.org/

16 CHAPTER 1. RELEASE NOTES

Module Enhancements

MOD_SSL New module in Apache httpd 2.0. This module is an interface to the SSL/TLS encryption protocols pro-
vided by OpenSSL.

MOD_DAV New module in Apache httpd 2.0. This module implements the HTTP Distributed Authoring and Version-
ing (DAV) specification for posting and maintaining web content.

MOD_DEFLATE New module in Apache httpd 2.0. This module allows supporting browsers to request that content
be compressed before delivery, saving network bandwidth.

MOD_AUTH_LDAP New module in Apache httpd 2.0.41. This module allows an LDAP database to be used to store
credentials for HTTP Basic Authentication. A companion module, MOD_LDAP provides connection pooling and
results caching.

MOD_AUTH_DIGEST Includes additional support for session caching across processes using shared memory.

MOD_CHARSET_LITE New module in Apache httpd 2.0. This experimental module allows for character set transla-
tion or recoding.

MOD_FILE_CACHE New module in Apache httpd 2.0. This module includes the functionality of mod-mmap_static
in Apache HTTP Server version 1.3, plus adds further caching abilities.

MOD_HEADERS This module is much more flexible in Apache httpd 2.0. It can now modify request headers used by
MOD_PROXY, and it can conditionally set response headers.

MOD_PROXY The proxy module has been completely rewritten to take advantage of the new filter infrastructure
and to implement a more reliable, HTTP/1.1 compliant proxy. In addition, new <PROXY> configuration
sections provide more readable (and internally faster) control of proxied sites; overloaded <Directory
"proxy:..."> configuration are not supported. The module is now divided into specific protocol support
modules including proxy_connect, proxy_-ftp and proxy_http.

MOD_NEGOTIATION A new FORCELANGUAGEPRIORITY directive can be used to assure that the client receives a
single document in all cases, rather than NOT ACCEPTABLE or MULTIPLE CHOICES responses. In addition,
the negotiation and MultiViews algorithms have been cleaned up to provide more consistent results and a new
form of type map that can include document content is provided.

MOD_AUTOINDEX Autoindex’ed directory listings can now be configured to use HTML tables for cleaner formatting,
and allow finer-grained control of sorting, including version-sorting, and wildcard filtering of the directory
listing.

MOD_INCLUDE New directives allow the default start and end tags for SSI elements to be changed and allow for
error and time format configuration to take place in the main configuration file rather than in the SSI document.
Results from regular expression parsing and grouping (now based on Perl’s regular expression syntax) can be
retrieved using MOD_INCLUDE’s variables $0 .. $9.

MOD_AUTH_DBM Now supports multiple types of DBM-like databases using the AUTHDBMTYPE directive.

1.5. THE APACHE LICENSE, VERSION 2.0 17
1.5 The Apache License, Version 2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1
through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the
License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or
are under common control with that entity. For the purposes of this definition, "control" means (i) the power,
direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software
source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form,
including but not limited to compiled object code, generated documentation, and conversions to other media

types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License,
as indicated by a copyright notice that is included in or attached to the work (an example is provided in the
Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from)
the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as
a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include
works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative
Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modi-
fications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for
inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal,
or written communication sent to the Licensor or its representatives, including but not limited to communication
on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on
behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that
is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has
been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to
reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to
You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section)

18

CHAPTER 1. RELEASE NOTES

patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such
license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as
of the date such litigation is filed.

. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any

medium, with or without modifications, and in Source or Object form, provided that You meet the following
conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent,
trademark, and attribution notices from the Source form of the Work, excluding those notices that do not
pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that
You distribute must include a readable copy of the attribution notices contained within such NOTICE file,
excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source
form or documentation, if provided along with the Derivative Works; or, within a display generated by the
Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE
file are for informational purposes only and do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different
license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Deriva-
tive Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted

for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without
any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the
terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or

product names of the Licensor, except as required for reasonable and customary use in describing the origin of
the Work and reproducing the content of the NOTICE file.

. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the

Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work
and assume any risks associated with Your exercise of permissions under this License.

. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract,

or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in
writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License or out of the use or inability to
use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of
the possibility of such damages.

1.5. THE APACHE LICENSE, VERSION 2.0 19

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof,
You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability
obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You
agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted
against, such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don’t include the brackets!) The text should be enclosed in
the appropriate comment syntax for the file format. We also recommend that a file or class name and description of

purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

20

CHAPTER 1. RELEASE NOTES

Chapter 2

Using the Apache HTTP Server

21

2 CHAPTER 2. USING THE APACHE HTTP SERVER
2.1 Compiling and Installing

This document covers compilation and installation of the Apache HTTP Server on Unix and Unix-like systems only.
For compiling and installation on Windows, see Using Apache HTTP Server with Microsoft Windows (p. 267) and
Compiling Apache for Microsoft Windows (p. 275) . For other platforms, see the platform (p. 266) documentation.

Apache httpd uses 1ibtool and autoconf to create a build environment that looks like many other Open Source
projects.

If you are upgrading from one minor version to the next (for example, 2.4.8 to 2.4.9), please skip down to the upgrading
section.

See also

e Configure the source tree (p. 307)
e Starting Apache httpd (p. 27)
e Stopping and Restarting (p. 29)

Overview for the impatient

Download $ lynx http://httpd.apache.org/download.cgi
Extract $ gzip -d httpd-NN.tar.gz
$ tar xvf httpd-NN.tar
$ cd httpd-NN
Configure $./configure --prefix=PREFIX
Compile $ make
Install $ make install
Customize $ vi PREFIX/conf/httpd.conf
Test $ PREFIX/bin/apachectl -k start

NN must be replaced with the current version number, and PREFIX must be replaced with the filesystem path under
which the server should be installed. If PREFIX is not specified, it defaults to /usr/local/apache?2.

Each section of the compilation and installation process is described in more detail below, beginning with the require-
ments for compiling and installing Apache httpd.

Requirements
The following requirements exist for building Apache httpd:

APR and APR-Util Make sure you have APR and APR-Util already installed on your system. If you
don’t, or prefer to not use the system-provided versions, download the latest versions of both APR
and APR-Util from Apache APR!, unpack them into /httpd_source_tree_root/srclib/apr and
/httpd_source_tree_root/srclib/apr-util (be sure the directory names do not have version numbers; for
example, the APR distribution must be under /httpd_source_tree_root/srclib/apr/) and use ./configure’s
--with-included-apr option. On some platforms, you may have to install the corresponding ~dev pack-
ages to allow httpd to build against your installed copy of APR and APR-Util.

Perl-Compatible Regular Expressions Library (PCRE) This library is required but not longer bundled with httpd.
Download the source code from http://www.pcre.org?, or install a Port or Package. If your build system can’t
find the pcre-config script installed by the PCRE build, point to it using the ——with-pcre parameter. On
some platforms, you may have to install the corresponding —dev package to allow httpd to build against your
installed copy of PCRE.

Uhttp://apr.apache.org/
2http://www.pcre.org/

http://apr.apache.org/
http://www.pcre.org/

2.1. COMPILING AND INSTALLING 23

Disk Space Make sure you have at least 50 MB of temporary free disk space available. After installation the server
occupies approximately 10 MB of disk space. The actual disk space requirements will vary considerably based
on your chosen configuration options, any third-party modules, and, of course, the size of the web site or sites
that you have on the server.

ANSI-C Compiler and Build System Make sure you have an ANSI-C compiler installed. The GNU C compiler
(GCC)? from the Free Software Foundation (FSF)* is recommended. If you don’t have GCC then at least make
sure your vendor’s compiler is ANSI compliant. In addition, your PATH must contain basic build tools such as
make.

Accurate time keeping Elements of the HTTP protocol are expressed as the time of day. So, it’s time to investigate
setting some time synchronization facility on your system. Usually the ntpdate or xntpd programs are used
for this purpose which are based on the Network Time Protocol (NTP). See the NTP homepage’ for more details
about NTP software and public time servers.

Perl 5° [OPTIONAL] For some of the support scripts like apxs or dbmmanage (which are written in Perl) the
Perl 5 interpreter is required (versions 5.003 or newer are sufficient). If no Perl 5 interpreter is found by the
configure script, you will not be able to use the affected support scripts. Of course, you will still be able to
build and use Apache httpd.

Download

The Apache HTTP Server can be downloaded from the Apache HTTP Server download site’, which lists several
mirrors. Most users of Apache on unix-like systems will be better off downloading and compiling a source version.
The build process (described below) is easy, and it allows you to customize your server to suit your needs. In addition,
binary releases are often not up to date with the latest source releases. If you do download a binary, follow the
instructions in the INSTALL . bindist file inside the distribution.

After downloading, it is important to verify that you have a complete and unmodified version of the Apache HTTP
Server. This can be accomplished by testing the downloaded tarball against the PGP signature. Details on how to do
this are available on the download page® and an extended example is available describing the use of PGP°.

Extract

Extracting the source from the Apache HTTP Server tarball is a simple matter of uncompressing, and then untarring:

$ gzip -d httpd-NN.tar.gz
$ tar xvf httpd-NN.tar

This will create a new directory under the current directory containing the source code for the distribution. You should
cd into that directory before proceeding with compiling the server.

Configuring the source tree

The next step is to configure the Apache source tree for your particular platform and personal requirements. This
is done using the script configure included in the root directory of the distribution. (Developers downloading an

3http://gcc.gnu.org/

“http://www.gnu.org/

Shttp://www.ntp.org
7http://httpd.apache.org/download.cgi
8http://httpd.apache.org/download.cgi#verify
9http://httpd.apache.org/dev/verification.html

http://gcc.gnu.org/
http://www.gnu.org/
http://www.ntp.org
http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi#verify
http://httpd.apache.org/dev/verification.html

24 CHAPTER 2. USING THE APACHE HTTP SERVER

unreleased version of the Apache source tree will need to have autoconf and 1ibtool installed and will need to
run buildconf before proceeding with the next steps. This is not necessary for official releases.)

To configure the source tree using all the default options, simply type . /configure. To change the default options,
configure accepts a variety of variables and command line options.

The most important option is the location ——prefix where Apache is to be installed later, because Apache has to
be configured for this location to work correctly. More fine-tuned control of the location of files is possible with
additional configure options (p. 307) .

Also at this point, you can specify which features (p. 307) you want included in Apache by enabling and disabling
modules (p. 1101) . Apache comes with a wide range of modules included by default. They will be compiled as shared
objects (DSOs) (p. 68) which can be loaded or unloaded at runtime. You can also choose to compile modules statically
by using the option ——enable-module=static.

Additional modules are enabled using the ——enable-module option, where module is the name of the module
with the mod_ string removed and with any underscore converted to a dash. Similarly, you can disable modules with
the ——disable-module option. Be careful when using these options, since configure cannot warn you if the
module you specify does not exist; it will simply ignore the option.

In addition, it is sometimes necessary to provide the configure script with extra information about the location
of your compiler, libraries, or header files. This is done by passing either environment variables or command line
options to configure. For more information, see the configure manual page. Or invoke configure using the
——help option.

For a short impression of what possibilities you have, here is a typical example which compiles Apache for the
installation tree / sw/pkg/apache with a particular compiler and flags plus the two additional modules MOD_LDAP
and MOD_LUA:

$ CC="pgcc" CFLAGS="-02" \
./configure --prefix=/sw/pkg/apache \
——enable-ldap=shared \

——enable—-lua=shared

When configure is run it will take several minutes to test for the availability of features on your system and build
Makefiles which will later be used to compile the server.

Details on all the different configure options are available on the configure manual page.

Build

Now you can build the various parts which form the Apache package by simply running the command:

$ make

Please be patient here, since a base configuration takes several minutes to compile and the time will vary widely
depending on your hardware and the number of modules that you have enabled.

Install

Now it’s time to install the package under the configured installation PREFIX (see ——prefix option above) by
running:

$ make install ‘

2.1. COMPILING AND INSTALLING 25

This step will typically require root privileges, since PREFIX is usually a directory with restricted write permissions.

If you are upgrading, the installation will not overwrite your configuration files or documents.

Customize

Next, you can customize your Apache HTTP server by editing the configuration files (p. 32) under PREFIX/conf/.

$ vi PREFIX/conf/httpd.conf ‘

Have a look at the Apache manual under PREFIX/docs/manual/ or consult http://httpd.apache.org/docs/trunk/
for the most recent version of this manual and a complete reference of available configuration directives (p. 1106) .

Test

Now you can start (p. 27) your Apache HTTP server by immediately running:

’$ PREFIX/bin/apachectl -k start ‘

You should then be able to request your first document via the URL http://localhost/. The web page you see
is located under the DOCUMENTROOT, which will usually be PREFIX/htdocs/. Then stop (p. 29) the server again
by running:

’$ PREFIX/bin/apachectl -k stop ‘

Upgrading

The first step in upgrading is to read the release announcement and the file CHANGES in the source distribution to
find any changes that may affect your site. When changing between major releases (for example, from 2.0 to 2.2 or
from 2.2 to 2.4), there will likely be major differences in the compile-time and run-time configuration that will require
manual adjustments. All modules will also need to be upgraded to accommodate changes in the module API.

Upgrading from one minor version to the next (for example, from 2.2.55 to 2.2.57) is easier. The make install
process will not overwrite any of your existing documents, log files, or configuration files. In addition, the developers
make every effort to avoid incompatible changes in the configure options, run-time configuration, or the module
API between minor versions. In most cases you should be able to use an identical configure command line, an
identical configuration file, and all of your modules should continue to work.

To upgrade across minor versions, start by finding the file config.nice in the build directory of your installed
server or at the root of the source tree for your old install. This will contain the exact configure command line
that you used to configure the source tree. Then to upgrade from one version to the next, you need only copy the
config.nice file to the source tree of the new version, edit it to make any desired changes, and then run:

$./config.nice

$ make

$ make install

$ PREFIX/bin/apachectl -k graceful-stop
$ PREFIX/bin/apachectl -k start

26 CHAPTER 2. USING THE APACHE HTTP SERVER

m You should always test any new version in your environment before putting it into produc-
tion. For example, you can install and run the new version along side the old one by using a
different ——prefix and a different port (by adjusting the LISTEN directive) to test for any
incompatibilities before doing the final upgrade.

You can pass additional arguments to config.nice, which will be appended to your original configure options:

’$./config.nice —--prefix=/home/test/apache —--with-port=90

Third-party packages

A large number of third parties provide their own packaged distributions of the Apache HTTP Server for installation
on particular platforms. This includes the various Linux distributions, various third-party Windows packages, Mac OS
X, Solaris, and many more.

Our software license not only permits, but encourages, this kind of redistribution. However, it does result in a situation
where the configuration layout and defaults on your installation of the server may differ from what is stated in the
documentation. While unfortunate, this situation is not likely to change any time soon.

A description of these third-party distrubutions!? is maintained in the HTTP Server wiki, and should reflect the current
state of these third-party distributions. However, you will need to familiarize yourself with your particular platform’s
package management and installation procedures.

10http://wiki.apache.org/httpd/DistrosDefaultLayout

http://wiki.apache.org/httpd/DistrosDefaultLayout

2.2. STARTING APACHE 27
2.2 Starting Apache

On Windows, Apache is normally run as a service. For details, see Running Apache as a Service (p. 267) .

On Unix, the httpd program is run as a daemon that executes continuously in the background to handle requests.
This document describes how to invoke httpd.

See also

e Stopping and Restarting (p. 29)
e httpd

e apachectl

How Apache Starts

If the LISTEN specified in the configuration file is default of 80 (or any other port below 1024), then it is necessary to
have root privileges in order to start apache, so that it can bind to this privileged port. Once the server has started and
performed a few preliminary activities such as opening its log files, it will launch several child processes which do the
work of listening for and answering requests from clients. The main ht tpd process continues to run as the root user,
but the child processes run as a less privileged user. This is controlled by the selected Multi-Processing Module (p.
90) .

The recommended method of invoking the ht t pd executable is to use the apachect 1 control script. This script sets
certain environment variables that are necessary for ht tpd to function correctly under some operating systems, and
then invokes the ht t pd binary. apachect 1 will pass through any command line arguments, so any ht tpd options
may also be used with apachectl. You may also directly edit the apachectl script by changing the HTTPD
variable near the top to specify the correct location of the ht tpd binary and any command-line arguments that you
wish to be always present.

The first thing that ht t pd does when it is invoked is to locate and read the configuration file (p. 32) httpd.conf.
The location of this file is set at compile-time, but it is possible to specify its location at run time using the —f
command-line option as in

/usr/local/apache2/bin/apachectl -f
/usr/local/apache2/conf/httpd.conf

If all goes well during startup, the server will detach from the terminal and the command prompt will return almost
immediately. This indicates that the server is up and running. You can then use your browser to connect to the server
and view the test page in the DOCUMENTROOT directory.

Errors During Start-up

If Apache suffers a fatal problem during startup, it will write a message describing the problem either to the console
or to the ERRORLOG before exiting. One of the most common error messages is "Unable to bind to Port
. ". This message is usually caused by either:

e Trying to start the server on a privileged port when not logged in as the root user; or

e Trying to start the server when there is another instance of Apache or some other web server already bound to
the same Port.

For further trouble-shooting instructions, consult the Apache FAQ''.

hittp://wiki.apache.org/httpd/FAQ

http://wiki.apache.org/httpd/FAQ

28 CHAPTER 2. USING THE APACHE HTTP SERVER

Starting at Boot-Time

If you want your server to continue running after a system reboot, you should add a call to apachectl to your
system startup files (typically rc. local or afile in an rc . N directory). This will start Apache as root. Before doing
this ensure that your server is properly configured for security and access restrictions.

The apachectl script is designed to act like a standard SysV init script; it can take the arguments start,
restart, and stop and translate them into the appropriate signals to httpd. So you can often simply link
apachect] into the appropriate init directory. But be sure to check the exact requirements of your system.

Additional Information

Additional information about the command-line options of httpd and apachectl as well as other support pro-
grams included with the server is available on the Server and Supporting Programs (p. 294) page. There is also
documentation on all the modules (p. 1101) included with the Apache distribution and the directives (p. 1106) that
they provide.

2.3. STOPPING AND RESTARTING APACHE HTTP SERVER 29
2.3 Stopping and Restarting Apache HTTP Server

This document covers stopping and restarting Apache HTTP Server on Unix-like systems. Windows NT, 2000 and
XP users should see Running httpd as a Service (p. 267) and Windows 9x and ME users should see Running httpd as
a Console Application (p. 267) for information on how to control httpd on those platforms.

See also

e httpd
e apachectl

e Starting (p. 27)

Introduction

In order to stop or restart the Apache HTTP Server, you must send a signal to the running ht tpd processes. There
are two ways to send the signals. First, you can use the unix ki11 command to directly send signals to the processes.
You will notice many httpd executables running on your system, but you should not send signals to any of them
except the parent, whose pid is in the PIDFILE. That is to say you shouldn’t ever need to send signals to any process
except the parent. There are four signals that you can send the parent: TERM, USR1, HUP, and WINCH, which will be
described in a moment.

To send a signal to the parent you should issue a command such as:

kill -TERM ‘cat /usr/local/apache2/logs/httpd.pid®

The second method of signaling the httpd processes is to use the —k command line options: stop, restart,
graceful and graceful-stop, as described below. These are arguments to the httpd binary, but we recom-
mend that you send them using the apachect 1 control script, which will pass them through to ht tpd.

After you have signaled ht tpd, you can read about its progress by issuing:

tail -f /usr/local/apache2/logs/error_log

Modify those examples to match your SERVERROOT and PIDFILE settings.

Stop Now

Signal: TERM apachectl -k stop

Sending the TERM or stop signal to the parent causes it to immediately attempt to kill off all of its children. It may
take it several seconds to complete killing off its children. Then the parent itself exits. Any requests in progress are
terminated, and no further requests are served.

Graceful Restart

Signal: USR1 apachectl -k graceful

30 CHAPTER 2. USING THE APACHE HTTP SERVER

The USR1 or graceful signal causes the parent process to advise the children to exit after their current request (or
to exit immediately if they’re not serving anything). The parent re-reads its configuration files and re-opens its log
files. As each child dies off the parent replaces it with a child from the new generation of the configuration, which
begins serving new requests immediately.

This code is designed to always respect the process control directive of the MPMs, so the number of processes and
threads available to serve clients will be maintained at the appropriate values throughout the restart process. Further-
more, it respects STARTSERVERS in the following manner: if after one second at least STARTSERVERS new children
have not been created, then create enough to pick up the slack. Hence the code tries to maintain both the number of
children appropriate for the current load on the server, and respect your wishes with the STARTSERVERS parameter.

Users of MOD_STATUS will notice that the server statistics are not set to zero when a USR1 is sent. The code was
written to both minimize the time in which the server is unable to serve new requests (they will be queued up by the
operating system, so they’re not lost in any event) and to respect your tuning parameters. In order to do this it has to
keep the scoreboard used to keep track of all children across generations.

The status module will also use a G to indicate those children which are still serving requests started before the graceful
restart was given.

At present there is no way for a log rotation script using USR1 to know for certain that all children writing the pre-
restart log have finished. We suggest that you use a suitable delay after sending the USR1 signal before you do anything
with the old log. For example if most of your hits take less than 10 minutes to complete for users on low bandwidth
links then you could wait 15 minutes before doing anything with the old log.

:?When you issue a restart, a syntax check is first run, to ensure that there are no errors in the

configuration files. If your configuration file has errors in it, you will get an error message
about that syntax error, and the server will refuse to restart. This avoids the situation where the
server halts and then cannot restart, leaving you with a non-functioning server.
This still will not guarantee that the server will restart correctly. To check the semantics of
the configuration files as well as the syntax, you can try starting ht tpd as a non-root user. If
there are no errors it will attempt to open its sockets and logs and fail because it’s not root (or
because the currently running ht t pd already has those ports bound). If it fails for any other
reason then it’s probably a config file error and the error should be fixed before issuing the
graceful restart.

Restart Now

Signal: HUP apachectl -k restart

Sending the HUP or restart signal to the parent causes it to kill off its children like in TERM, but the parent doesn’t
exit. It re-reads its configuration files, and re-opens any log files. Then it spawns a new set of children and continues
serving hits.

Users of MOD_STATUS will notice that the server statistics are set to zero when a HUP is sent.

iAs with a graceful restart, a syntax check is run before the restart is attempted. If your config-
uration file has errors in it, the restart will not be attempted, and you will receive notification
of the syntax error(s).

Graceful Stop

Signal: WINCH apachectl -k graceful-stop

The WINCH or graceful-stop signal causes the parent process to advise the children to exit after their current
request (or to exit immediately if they’re not serving anything). The parent will then remove its PIDFILE and cease

2.3. STOPPING AND RESTARTING APACHE HTTP SERVER 31

listening on all ports. The parent will continue to run, and monitor children which are handling requests. Once all
children have finalised and exited or the timeout specified by the GRACEFULSHUTDOWNTIMEOUT has been reached,
the parent will also exit. If the timeout is reached, any remaining children will be sent the TERM signal to force them
to exit.

A TERM signal will immediately terminate the parent process and all children when in the "graceful" state. However
as the PIDFILE will have been removed, you will not be able to use apachectl or httpd to send this signal.

:>The graceful-stop signal allows you to run multiple identically configured instances of
httpd at the same time. This is a powerful feature when performing graceful upgrades of
httpd, however it can also cause deadlocks and race conditions with some configurations.
Care has been taken to ensure that on-disk files such as lock files (MUTEX) and Unix socket
files (SCRIPTSOCK) contain the server PID, and should coexist without problem. However, if
a configuration directive, third-party module or persistent CGI utilises any other on-disk lock
or state files, care should be taken to ensure that multiple running instances of httpd do not
clobber each other’s files.

You should also be wary of other potential race conditions, such as using rotatelogs style
piped logging. Multiple running instances of rotatelogs attempting to rotate the same
logfiles at the same time may destroy each other’s logfiles.

32 CHAPTER 2. USING THE APACHE HTTP SERVER
2.4 Configuration Files

This document describes the files used to configure Apache HTTP Server.

Main Configuration Files

Related Modules Related Directives

MOD_MIME <IFDEFINE >
INCLUDE
TYPESCONFIG

Apache HTTP Server is configured by placing directives (p. 1106) in plain text configuration files. The main config-
uration file is usually called httpd.conf. The location of this file is set at compile-time, but may be overridden
with the —f command line flag. In addition, other configuration files may be added using the INCLUDE directive, and
wildcards can be used to include many configuration files. Any directive may be placed in any of these configuration
files. Changes to the main configuration files are only recognized by httpd when it is started or restarted.

The server also reads a file containing mime document types; the filename is set by the TYPESCONFIG directive, and
ismime . types by default.

Syntax of the Configuration Files

httpd configuration files contain one directive per line. The backslash "\ " may be used as the last character on a line
to indicate that the directive continues onto the next line. There must be no other characters or white space between
the backslash and the end of the line.

Arguments to directives are separated by whitespace. If an argument contains spaces, you must enclose that argument
in quotes.

Directives in the configuration files are case-insensitive, but arguments to directives are often case sensitive. Lines
that begin with the hash character "#" are considered comments, and are ignored. Comments may not be included
on the same line as a configuration directive. White space occurring before a directive is ignored, so you may indent
directives for clarity. Blank lines are also ignored.

The values of variables defined with the DEFINE of or shell environment variables can be used in configuration file
lines using the syntax ${VAR}. If "VAR" is the name of a valid variable, the value of that variable is substituted into
that spot in the configuration file line, and processing continues as if that text were found directly in the configuration
file. Variables defined with DEFINE take precedence over shell environment variables. If the "VAR" variable is not
found, the characters ${VAR} are left unchanged, and a warning is logged. Variable names may not contain colon ":"
characters, to avoid clashes with REWRITEMAP’s syntax.

Only shell environment variables defined before the server is started can be used in expansions. Environment variables
defined in the configuration file itself, for example with SETENV, take effect too late to be used for expansions in the
configuration file.

The maximum length of a line in normal configuration files, after variable substitution and joining any continued lines,
is approximately 16 MiB. In .htaccess files (p. 32) , the maximum length is 8190 characters.

You can check your configuration files for syntax errors without starting the server by using apachectl
configtest or the —t command line option.

You can use MOD_INFO’s ~DDUMP_CONF IG to dump the configuration with all included files and environment vari-
ables resolved and all comments and non-matching <IFDEFINE> and <IFMODULE>> sections removed. However,
the output does not reflect the merging or overriding that may happen for repeated directives.

2.4. CONFIGURATION FILES 33

Modules
Related Modules Related Directives
MOD_SO <IFMODULE>

LOADMODULE

httpd is a modular server. This implies that only the most basic functionality is included in the core server. Extended
features are available through modules (p. 1101) which can be loaded into httpd. By default, a base (p. 376) set of
modules is included in the server at compile-time. If the server is compiled to use dynamically loaded (p. 68) modules,
then modules can be compiled separately and added at any time using the LOADMODULE directive. Otherwise, httpd
must be recompiled to add or remove modules. Configuration directives may be included conditional on a presence of
a particular module by enclosing them in an <IFMODULE> block. However, <IFMODULE> blocks are not required,
and in some cases may mask the fact that you’re missing an important module.

To see which modules are currently compiled into the server, you can use the -1 command line option. You can also
see what modules are loaded dynamically using the -M command line option.

Scope of Directives

Related Modules Related Directives
<DIRECTORY >
<DIRECTORYMATCH>
<FILES>
<FILESMATCH>
<LOCATION>
<LOCATIONMATCH >
<VIRTUALHOST>

Directives placed in the main configuration files apply to the entire server. If you wish to change the configuration for
only a part of the server, you can scope your directives by placing them in <DIRECTORY >, <DIRECTORYMATCH>,
<FILES>, <FILESMATCH>, <LOCATION>, and <LOCATIONMATCH> sections. These sections limit the applica-
tion of the directives which they enclose to particular filesystem locations or URLs. They can also be nested, allowing
for very fine grained configuration.

httpd has the capability to serve many different websites simultaneously. This is called Virtual Hosting (p. 124) .
Directives can also be scoped by placing them inside <VIRTUALHOST> sections, so that they will only apply to
requests for a particular website.

Although most directives can be placed in any of these sections, some directives do not make sense in some contexts.
For example, directives controlling process creation can only be placed in the main server context. To find which
directives can be placed in which sections, check the Context (p. 377) of the directive. For further information, we
provide details on How Directory, Location and Files sections work (p. 35) .

.htaccess Files

Related Modules Related Directives
ACCESSFILENAME
ALLOWOVERRIDE

httpd allows for decentralized management of configuration via special files placed inside the web tree. The special
files are usually called . htaccess, but any name can be specified in the ACCESSFILENAME directive. Directives

34 CHAPTER 2. USING THE APACHE HTTP SERVER

placed in . htaccess files apply to the directory where you place the file, and all sub-directories. The . htaccess
files follow the same syntax as the main configuration files. Since . ht access files are read on every request, changes
made in these files take immediate effect.

To find which directives can be placed in . ht access files, check the Context (p. 377) of the directive. The server ad-
ministrator further controls what directives may be placed in . htaccess files by configuring the ALLOWOVERRIDE
directive in the main configuration files.

For more information on . htaccess files, see the .htaccess tutorial (p. 249) .

2.5. CONFIGURATION SECTIONS 35
2.5 Configuration Sections

Directives in the configuration files (p. 32) may apply to the entire server, or they may be restricted to apply only to
particular directories, files, hosts, or URLs. This document describes how to use configuration section containers or
.htaccess files to change the scope of other configuration directives.

Types of Configuration Section Containers

Related Modules Related Directives
CORE <DIRECTORY >
MOD_VERSION <DIRECTORYMATCH>
MOD_PROXY <FILES>
<FILESMATCH>
<IF>
<IFDEFINE >
<IFMODULE>
<IFVERSION>
<LOCATION>
<LOCATIONMATCH>
<PROXY>
<PROXYMATCH>
<VIRTUALHOST>

There are two basic types of containers. Most containers are evaluated for each request. The enclosed directives are
applied only for those requests that match the containers. The <IFDEFINE>, <IFMODULE>, and <IFVERSION>
containers, on the other hand, are evaluated only at server startup and restart. If their conditions are true at startup,
then the enclosed directives will apply to all requests. If the conditions are not true, the enclosed directives will be
ignored.

The <IFDEFINE> directive encloses directives that will only be applied if an appropriate parameter is defined on the
httpd command line. For example, with the following configuration, all requests will be redirected to another site
only if the server is started using httpd -DClosedForNow:

<IfDefine ClosedForNow>
Redirect "/" "http://otherserver.example.com/"
</IfDefine>

The <IFMODULE> directive is very similar, except it encloses directives that will only be applied if a particular
module is available in the server. The module must either be statically compiled in the server, or it must be dynamically
compiled and its LOADMODULE line must be earlier in the configuration file. This directive should only be used if
you need your configuration file to work whether or not certain modules are installed. It should not be used to enclose
directives that you want to work all the time, because it can suppress useful error messages about missing modules.

In the following example, the MIMEM AGICFILE directive will be applied only if MOD_MIME_MAGIC is available.

<IfModule mod_mime_magic.c>
MimeMagicFile conf/magic
</IfModule>

The <IFVERSION> directive is very similar to <IFDEFINE> and <IFMODULE>, except it encloses directives that
will only be applied if a particular version of the server is executing. This module is designed for the use in test suites
and large networks which have to deal with different httpd versions and different configurations.

36 CHAPTER 2. USING THE APACHE HTTP SERVER

<IfVersion >= 2.4>
this happens only in versions greater or
equal 2.4.0.

</IfVersion>

<IFDEFINE>, <IFMODULE>, and the <IFVERSION> can apply negative conditions by preceding their test with
"1, Also, these sections can be nested to achieve more complex restrictions.

Filesystem, Webspace, and Boolean Expressions

The most commonly used configuration section containers are the ones that change the configuration of particular
places in the filesystem or webspace. First, it is important to understand the difference between the two. The filesys-
tem is the view of your disks as seen by your operating system. For example, in a default install, Apache httpd resides at
/usr/local/apache? in the Unix filesystem or "c: /Program Files/Apache Group/Apache2" inthe
Windows filesystem. (Note that forward slashes should always be used as the path separator in Apache httpd configura-
tion files, even for Windows.) In contrast, the webspace is the view of your site as delivered by the web server and seen
by the client. So the path /dir/ in the webspace corresponds to the path /usr/local/apache2/htdocs/dir/
in the filesystem of a default Apache httpd install on Unix. The webspace need not map directly to the filesystem,
since webpages may be generated dynamically from databases or other locations.

Filesystem Containers

The <DIRECTORY> and <FILES> directives, along with their regex counterparts, apply directives to parts of the
filesystem. Directives enclosed in a <DIRECTORY > section apply to the named filesystem directory and all subdirec-
tories of that directory (as well as the files in those directories). The same effect can be obtained using .htaccess files
(p- 249) . For example, in the following configuration, directory indexes will be enabled for the /var/web/dirl
directory and all subdirectories.

<Directory "/var/web/dirl">
Options +Indexes
</Directory>

Directives enclosed in a <FILES> section apply to any file with the specified name, regardless of what directory it lies
in. So for example, the following configuration directives will, when placed in the main section of the configuration
file, deny access to any file named private.html regardless of where it is found.

<Files "private.html">
Require all denied
</Files>

To address files found in a particular part of the filesystem, the <FILES> and <DIRECTORY>> sections can be
combined. For example, the following configuration will deny access to /var/web/dirl/private.html,
/var/web/dirl/subdir2/private.html, /var/web/dirl/subdir3/private.html, and any
other instance of private.html found under the /var/web/dirl/ directory.

<Directory "/var/web/dirl">

<Files "private.html">

Require all denied
</Files>
</Directory>

2.5. CONFIGURATION SECTIONS 37

Webspace Containers

The <LOCATION> directive and its regex counterpart, on the other hand, change the config-
uration for content in the webspace. For example, the following configuration prevents ac-
cess to any URL-path that begins in /private. In particular, it will apply to requests for
http://yoursite.example.com/private, http://yoursite.example.com/privatel23, and
http://yoursite.example.com/private/dir/file.html as well as any other requests starting with
the /private string.

<LocationMatch ""/private">
Require all denied
</LocationMatch>

The <LOCATION> directive need not have anything to do with the filesystem. For example, the following example
shows how to map a particular URL to an internal Apache HTTP Server handler provided by MOD_STATUS. No file
called server—status needs to exist in the filesystem.

<Location "/server-status">
SetHandler server-status
</Location>

Overlapping Webspace

In order to have two overlapping URLs one has to consider the order in which certain sections or directives are
evaluated. For <LOCATION>> this would be:

<Location "/foo">
</Location>

<Location "/foo/bar">
</Location>

<ALIAS>es on the other hand, are mapped vice-versa:

Alias "/foo/bar" "/srv/www/uncommon/bar"
Alias "/foo" "/srv/www/common/foo"

The same is true for the PROXYPASS directives:

ProxyPass "/special-area" "http://special.example.com" smax=5 max=10
ProxyPass "/" "balancer://mycluster/" stickysession=JSESSIONID| jsessionid nofailover=0n

Wildcards and Regular Expressions

The <DIRECTORY>, <FILES>, and <LOCATION>> directives can each use shell-style wildcard characters as in
fnmatch from the C standard library. The character "*" matches any sequence of characters, "?" matches any
single character, and "[seq]" matches any character in seq. The "/" character will not be matched by any wildcard; it
must be specified explicitly.

If even more flexible matching is required, each container has a regular expression (regex) counterpart <DIRECTORY-
MATCH>, <FILESMATCH>, and <LOCATIONMATCH> that allow perl-compatible regular expressions to be used
in choosing the matches. But see the section below on configuration merging to find out how using regex sections will
change how directives are applied.

A non-regex wildcard section that changes the configuration of all user directories could look as follows:

38 CHAPTER 2. USING THE APACHE HTTP SERVER

<Directory "/home/*/public_html">
Options Indexes
</Directory>

Using regex sections, we can deny access to many types of image files at once:

<FilesMatch "\. (?i:gif]|jpe?glpng)s$">
Require all denied
</FilesMatch>

Regular expressions containing named groups and backreferences are added to the environment with the correspond-
ing name in uppercase. This allows elements of filename paths and URLSs to be referenced from within expressions (p.
99) and modules like MOD_REWRITE.

<DirectoryMatch ""/var/www/combined/ (?<SITENAME>["/]+)">
require ldap-group cn=%{env:MATCH_SITENAME}, ou=combined, o=Example
</DirectoryMatch>

Boolean expressions

The <IF> directive change the configuration depending on a condition which can be expressed by a boolean ex-
pression. For example, the following configuration denies access if the HTTP Referer header does not start with
"http://www.example.com/".

<If "! (%{HTTP_REFERER} -strmatch ’'http://www.example.com/*’)">
Require all denied
</I1f>

What to use When

Choosing between filesystem containers and webspace containers is actually quite easy. When applying directives to
objects that reside in the filesystem always use <DIRECTORY> or <FILES>. When applying directives to objects
that do not reside in the filesystem (such as a webpage generated from a database), use <LOCATION>.

It is important to never use <LOCATION> when trying to restrict access to objects in the filesystem. This is because
many different webspace locations (URLSs) could map to the same filesystem location, allowing your restrictions to be
circumvented. For example, consider the following configuration:

<Location "/dir/">
Require all denied
</Location>

This works fine if the request is for http://yoursite.example.com/dir/. But what if you
are on a case-insensitive filesystem? Then your restriction could be easily circumvented by requesting
http://yoursite.example.com/DIR/. The <DIRECTORY> directive, in contrast, will apply to any con-
tent served from that location, regardless of how it is called. (An exception is filesystem links. The same directory can
be placed in more than one part of the filesystem using symbolic links. The <DIRECTORY > directive will follow the
symbolic link without resetting the pathname. Therefore, for the highest level of security, symbolic links should be
disabled with the appropriate OPTIONS directive.)

If you are, perhaps, thinking that none of this applies to you because you use a case-sensitive filesystem, remember that
there are many other ways to map multiple webspace locations to the same filesystem location. Therefore you should

2.5. CONFIGURATION SECTIONS 39

always use the filesystem containers when you can. There is, however, one exception to this rule. Putting configuration
restrictions in a <Location "/"> section is perfectly safe because this section will apply to all requests regardless
of the specific URL.

Nesting of sections

Some section types can be nested inside other section types. On the one hand, <FILES> can be used inside <DIREC-
TORY>. On the other hand, <IF> can be used inside <DIRECTORY>, <LOCATION>, and <FILES> sections. The
regex counterparts of the named section behave identically.

Nested sections are merged after non-nested sections of the same type.

Virtual Hosts

The <VIRTUALHOST> container encloses directives that apply to specific hosts. This is useful when serving multiple
hosts from the same machine with a different configuration for each. For more information, see the Virtual Host
Documentation (p. 124) .

Proxy

The <PROXY> and <PROXYMATCH> containers apply enclosed configuration directives only to sites accessed
through MOD_PROXY’s proxy server that match the specified URL. For example, the following configuration will
allow only a subset of clients to access the www . example . com website using the proxy server:

<Proxy http://www.example.com/*>
Require host yournetwork.example.com
</Proxy>

What Directives are Allowed?

To find out what directives are allowed in what types of configuration sections, check the Context (p. 377) of the direc-
tive. Everything that is allowed in <DIRECTORY> sections is also syntactically allowed in <DIRECTORYMATCH>,
<FILES>, <FILESMATCH>, <LOCATION>, <LOCATIONMATCH>, <PROXY>, and <PROXYMATCH> sections.
There are some exceptions, however:

e The ALLOWOVERRIDE directive works only in <DIRECTORY > sections.

e The FollowSymLinks and SymLinksIfOwnerMatch OPTIONS work only in <DIRECTORY> sections
or .htaccess files.

e The OPTIONS directive cannot be used in <FILES> and <FILESMATCH> sections.

How the sections are merged

The configuration sections are applied in a very particular order. Since this can have important effects on how config-
uration directives are interpreted, it is important to understand how this works.

The order of merging is:

1. <DIRECTORY> (except regular expressions) and .htaccess done simultaneously (with .htaccess, if
allowed, overriding <DIRECTORY >)

40 CHAPTER 2. USING THE APACHE HTTP SERVER

2. <DIRECTORYMATCH> (and <Directory ~>)

3. <FILES> and <FILESMATCH> done simultaneously

»

<LOCATION> and <LOCATIONMATCH> done simultaneously

5. <IF>

Apart from <DIRECTORY>, each group is processed in the order that they appear in the configuration files. <D1-
RECTORY> (group 1 above) is processed in the order shortest directory component to longest. So for example,
<Directory "/var/web/dir"> will be processed before <Directory "/var/web/dir/subdir">.
If multiple <DIRECTORY> sections apply to the same directory they are processed in the configuration file order.
Configurations included via the INCLUDE directive will be treated as if they were inside the including file at the
location of the INCLUDE directive.

Sections inside < VIRTUALHOST> sections are applied after the corresponding sections outside the virtual host defi-
nition. This allows virtual hosts to override the main server configuration.

When the request is served by MOD_PROXY, the <PROXY > container takes the place of the <DIRECTORY> container
in the processing order.

:f> Technical Note

There is actually a <Location>/<LocationMatch> sequence performed just before
the name translation phase (where Aliases and DocumentRoots are used to map URLs
to filenames). The results of this sequence are completely thrown away after the translation
has completed.

Relationship between modules and configuration sections

One question that often arises after reading how configuration sections are merged is related to how and when directives
of specific modules like MOD_REWRITE are processed. The answer is not trivial and needs a bit of background. Each
httpd module manages its own configuration, and each of its directives in httpd.conf specify one piece of configuration
in a particular context. httpd does not execute a command as it is read.

At runtime, the core of httpd iterates over the defined configuration sections in the order described above to determine
which ones apply to the current request. When the first section matches, it is considered the current configuration for
this request. If a subsequent section matches too, then each module with a directive in either of the sections is given a
chance to merge its configuration between the two sections. The result is a third configuration, and the process goes
on until all the configuration sections are evaluated.

After the above step, the "real" processing of the HTTP request begins: each module has a chance to run and perform
whatever tasks they like. They can retrieve their own final merged configuration from the core of the httpd to determine
how they should act.

An example can help to visualize the whole process. The following configuration uses the HEADER directive of
MOD_HEADERS to set a specific HTTP header. What value will httpd set in the Cust omHeaderName header for a
request to /example/index.html ?

<Directory "/">
Header set CustomHeaderName one

<FilesMatch ".x">
Header set CustomHeaderName three
</FilesMatch>
</Directory>

<Directory "/example">
Header set CustomHeaderName two

2.5. CONFIGURATION SECTIONS 41
</Directory>

e DIRECTORY "/" matches and an initial configuration to set the Cust omHeaderName header with the value
one is created.

e DIRECTORY "/example" matches, and since MOD_HEADERS specifies in its code to override in case of a merge,
a new configuration is created to set the Cust omHeaderName header with the value two.

e FILESMATCH ".*" matches and another merge opportunity arises, causing the Cust omHeaderName header
to be set with the value three.

e Eventually during the next steps of the HTTP request processing MOD_HEADERS will be called and it will
receive the configuration to set the CustomHeaderName header with the value three. MOD_HEADERS
normally uses this configuration to perfom its job, namely setting the foo header. This does not mean that a
module can’t perform a more complex action like discarding directives because not needed or deprecated, etc..

This is true for .htaccess too since they have the same priority as DIRECTORY in the merge order. The important
concept to understand is that configuration sections like DIRECTORY and FILESMATCH are not comparable to module
specific directives like HEADER or REWRITERULE because they operate on different levels.

Some useful examples

Below is an artificial example to show the order of merging. Assuming they all apply to the request, the directives in
this example will be applied in the order A >B > C > D > E.

<Location "/">
E
</Location>

<Files "f.html">
D
</Files>

<VirtualHost x>

<Directory "/a/emphasis role="bold"">
B

</Directory>

</VirtualHost>

<DirectoryMatch "~ .*xbS$">
C
</DirectoryMatch>

<Directory "/a/b>
A
</Directory>

For a more concrete example, consider the following. Regardless of any access restrictions placed in <DIRECTORY >
sections, the <LOCATION> section will be evaluated last and will allow unrestricted access to the server. In other
words, order of merging is important, so be careful!

<Location "/">
Require all granted
</Location>

42 CHAPTER 2. USING THE APACHE HTTP SERVER

Whoops! This <Directory> section will have no effect
<Directory "/">
<RequireAll>
Require all granted
Require not host badguy.example.com
</RequireAll>
</Directory>

2.6. CACHING GUIDE 43
2.6 Caching Guide

This document supplements the MOD_CACHE, MOD_CACHE_DISK, MOD_FILE_CACHE and htcacheclean (p. 319) ref-
erence documentation. It describes how to use the Apache HTTP Server’s caching features to accelerate web and
proxy serving, while avoiding common problems and misconfigurations.

Introduction

The Apache HTTP server offers a range of caching features that are designed to improve the performance of the server
in various ways.

Three-state RFC2616 HTTP caching MOD_CACHE and its provider modules MOD_CACHE_DISK provide intelli-
gent, HTTP-aware caching. The content itself is stored in the cache, and mod_cache aims to honor all of
the various HTTP headers and options that control the cacheability of content as described in Section 13 of
RFC2616'2. MOD_CACHE is aimed at both simple and complex caching configurations, where you are dealing
with proxied content, dynamic local content or have a need to speed up access to local files on a potentially slow
disk.

Two-state key/value shared object caching The shared object cache API (p. 114) (socache) and its provider modules
provide a server wide key/value based shared object cache. These modules are designed to cache low level data
such as SSL sessions and authentication credentials. Backends allow the data to be stored server wide in shared
memory, or datacenter wide in a cache such as memcache or distcache.

Specialized file caching MOD_FILE_CACHE offers the ability to pre-load files into memory on server startup, and can
improve access times and save file handles on files that are accessed often, as there is no need to go to disk on
each request.

To get the most from this document, you should be familiar with the basics of HTTP, and have read the Users’ Guides
to Mapping URLSs to the Filesystem (p. 64) and Content negotiation (p. 78) .

Three-state RFC2616 HTTP caching

Related Modules Related Directives

MOD_CACHE CACHEENABLE

MOD_CACHE_DISK CACHEDISABLE
USECANONICALNAME
CACHENEGOTIATEDDOCS

The HTTP protocol contains built in support for an in-line caching mechanism
described by section 13 of RFC2616'3, and the MOD_CACHE module can be used to take advantage of this.

Unlike a simple two state key/value cache where the content disappears completely when no longer fresh, an HTTP
cache includes a mechanism to retain stale content, and to ask the origin server whether this stale content has changed
and if not, make it fresh again.

An entry in an HTTP cache exists in one of three states:

Fresh If the content is new enough (younger than its freshness lifetime), it is considered fresh. An HTTP cache is
free to serve fresh content without making any calls to the origin server at all.

Phttp://www.w3.org/Protocols/rfc2616/rfc2616-sec 13.html
Bhttp://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

44 CHAPTER 2. USING THE APACHE HTTP SERVER

Stale If the content is too old (older than its freshness lifetime), it is considered stale. An HTTP cache should contact
the origin server and check whether the content is still fresh before serving stale content to a client. The origin
server will either respond with replacement content if not still valid, or ideally, the origin server will respond
with a code to tell the cache the content is still fresh, without the need to generate or send the content again. The
content becomes fresh again and the cycle continues.

The HTTP protocol does allow the cache to serve stale data under certain circumstances, such as when an
attempt to freshen the data with an origin server has failed with a 5xx error, or when another request is already
in the process of freshening the given entry. In these cases a Warning header is added to the response.

Non Existent If the cache gets full, it reserves the option to delete content from the cache to make space. Content can
be deleted at any time, and can be stale or fresh. The htcacheclean (p. 319) tool can be run on a once off basis,
or deployed as a daemon to keep the size of the cache within the given size, or the given number of inodes. The
tool attempts to delete stale content before attempting to delete fresh content.

Full details of how HTTP caching works can be found in
Section 13 of RFC2616'4.

Interaction with the Server

The MOD_CACHE module hooks into the server in two possible places depending on the value of the CACHEQUICK-
HANDLER directive:

Quick handler phase This phase happens very early on during the request processing, just after the request has been
parsed. If the content is found within the cache, it is served immediately and almost all request processing is
bypassed.

In this scenario, the cache behaves as if it has been "bolted on" to the front of the server.

This mode offers the best performance, as the majority of server processing is bypassed. This mode however
also bypasses the authentication and authorization phases of server processing, so this mode should be chosen
with care when this is important.

Requests with an " Authorization" header (for example, HTTP Basic Authentication) are neither cacheable nor
served from the cache when MOD_CACHE is running in this phase.

Normal handler phase This phase happens late in the request processing, after all the request phases have completed.
In this scenario, the cache behaves as if it has been "bolted on" to the back of the server.

This mode offers the most flexibility, as the potential exists for caching to occur at a precisely controlled point
in the filter chain, and cached content can be filtered or personalized before being sent to the client.

If the URL is not found within the cache, MOD_CACHE will add a filter (p. 110) to the filter stack in order to record
the response to the cache, and then stand down, allowing normal request processing to continue. If the content is
determined to be cacheable, the content will be saved to the cache for future serving, otherwise the content will be
ignored.

If the content found within the cache is stale, the MOD_CACHE module converts the request into a conditional request.
If the origin server responds with a normal response, the normal response is cached, replacing the content already
cached. If the origin server responds with a 304 Not Modified response, the content is marked as fresh again, and the
cached content is served by the filter instead of saving it.

B http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

2.6. CACHING GUIDE 45

Improving Cache Hits

When a virtual host is known by one of many different server aliases, ensuring that USECANONICALNAME is set
to On can dramatically improve the ratio of cache hits. This is because the hostname of the virtual-host serving the
content is used within the cache key. With the setting set to On virtual-hosts with multiple server names or aliases will
not produce differently cached entities, and instead content will be cached as per the canonical hostname.

Freshness Lifetime

Well formed content that is intended to be cached should declare an explicit freshness lifetime with the
Cache—-Control header’s max—age or s—maxage fields, or by including an Expires header.

At the same time, the origin server defined freshness lifetime can be overridden by a client when the client presents
their own Cache-Control header within the request. In this case, the lowest freshness lifetime between request
and response wins.

When this freshness lifetime is missing from the request or the response, a default freshness lifetime is applied.
The default freshness lifetime for cached entities is one hour, however this can be easily over-ridden by using the
CACHEDEFAULTEXPIRE directive.

If a response does not include an Expires header but does include a Last-Modified header, MOD_CACHE can
infer a freshness lifetime based on a heuristic, which can be controlled through the use of the CACHELASTMODI-
FIEDFACTOR directive.

For local content, or for remote content that does not define its own Expires header, MOD_EXPIRES may be used to
fine-tune the freshness lifetime by adding max—-age and Expires.

The maximum freshness lifetime may also be controlled by using the CACHEM AXEXPIRE.

A Brief Guide to Conditional Requests

When content expires from the cache and becomes stale, rather than pass on the original request, httpd will modify the
request to make it conditional instead.

When an ETag header exists in the original cached response, MOD_CACHE will add an I f-None-Match header to
the request to the origin server. When a Last -Mod1i fied header exists in the original cached response, MOD_CACHE
will add an If-Modified-Since header to the request to the origin server. Performing either of these actions
makes the request conditional.

When a conditional request is received by an origin server, the origin server should check whether the ETag or the Last-
Modified parameter has changed, as appropriate for the request. If not, the origin should respond with a terse "304
Not Modified" response. This signals to the cache that the stale content is still fresh should be used for subsequent
requests until the content’s new freshness lifetime is reached again.

If the content has changed, then the content is served as if the request were not conditional to begin with.

Conditional requests offer two benefits. Firstly, when making such a request to the origin server, if the content from
the origin matches the content in the cache, this can be determined easily and without the overhead of transferring the
entire resource.

Secondly, a well designed origin server will be designed in such a way that conditional requests will be significantly
cheaper to produce than a full response. For static files, typically all that is involved is a call to stat () or similar
system call, to see if the file has changed in size or modification time. As such, even local content may still be served
faster from the cache if it has not changed.

Origin servers should make every effort to support conditional requests as is practical, however if conditional requests
are not supported, the origin will respond as if the request was not conditional, and the cache will respond as if the

46 CHAPTER 2. USING THE APACHE HTTP SERVER

content had changed and save the new content to the cache. In this case, the cache will behave like a simple two state
cache, where content is effectively either fresh or deleted.

What Can be Cached?

The full definition of which responses can be cached by an HTTP cache is defined in

RFC2616 Section 13.4 Response Cacheability'’, and can be summed up as follows:

1. Caching must be enabled for this URL. See the CACHEENABLE and CACHEDISABLE directives.
2. The response must have a HTTP status code of 200, 203, 300, 301 or 410.
3. The request must be a HTTP GET request.

4. If the response contains an " Authorization: " header, it must also contain an "s-maxage", "must-revalidate" or
"public" option in the "Cache-Control:" header, or it won’t be cached.

5. If the URL included a query string (e.g. from a HTML form GET method) it will not be cached unless the
response specifies an explicit expiration by including an "Expires:" header or the max-age or s-maxage directive
of the "Cache-Control:" header, as per RFC2616 sections 13.9 and 13.2.1.

6. If the response has a status of 200 (OK), the response must also include at least one of the "Etag", "Last-
Modified" or the "Expires" headers, or the max-age or s-maxage directive of the "Cache-Control:" header,
unless the CACHEIGNORENOLASTMOD directive has been used to require otherwise.

7. If the response includes the "private" option in a "Cache-Control:" header, it will not be stored unless the
CACHESTOREPRIVATE has been used to require otherwise.

8. Likewise, if the response includes the "no-store" option in a "Cache-Control:" header, it will not be stored
unless the CACHESTORENOSTORE has been used.

9. A response will not be stored if it includes a " Vary:" header containing the match-all "*".

What Should Not be Cached?

It should be up to the client creating the request, or the origin server constructing the response to decide whether or not
the content should be cacheable or not by correctly setting the Cache—Control header, and MOD_CACHE should be
left alone to honor the wishes of the client or server as appropriate.

Content that is time sensitive, or which varies depending on the particulars of the request that are not covered by HTTP
negotiation, should not be cached. This content should declare itself uncacheable using the Cache-Control header.

If content changes often, expressed by a freshness lifetime of minutes or seconds, the content can still be cached,
however it is highly desirable that the origin server supports conditional requests correctly to ensure that full responses
do not have to be generated on a regular basis.

Content that varies based on client provided request headers can be cached through intelligent use of the Vary re-
sponse header.

Shttp://www.w3.org/Protocols/rfc2616/rfc2616-sec 13 html#sec13.4

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.4

2.6. CACHING GUIDE 47

Variable/Negotiated Content

When the origin server is designed to respond with different content based on the value of headers in the request, for
example to serve multiple languages at the same URL, HTTP’s caching mechanism makes it possible to cache multiple
variants of the same page at the same URL.

This is done by the origin server adding a Vary header to indicate which headers must be taken into account by a
cache when determining whether two variants are different from one another.

If for example, a response is received with a vary header such as;

Vary: negotiate,accept-language,accept-charset

MOD_CACHE will only serve the cached content to requesters with accept-language and accept-charset headers match-
ing those of the original request.

Multiple variants of the content can be cached side by side, MOD_CACHE uses the Vary header and the corresponding
values of the request headers listed by Vary to decide on which of many variants to return to the client.

Caching to Disk

The MOD_CACHE module relies on specific backend store implementations in order to manage the cache, and for
caching to disk MOD_CACHE_DISK is provided to support this.

Typically the module will be configured as so;

CacheRoot "/var/cache/apache/"
CacheEnable disk /
CacheDirLevels 2

CacheDirLength 1

Importantly, as the cached files are locally stored, operating system in-memory caching will typically be applied to
their access also. So although the files are stored on disk, if they are frequently accessed it is likely the operating
system will ensure that they are actually served from memory.

Understanding the Cache-Store

To store items in the cache, MOD_CACHE_DISK creates a 22 character hash of the URL being requested. This hash
incorporates the hostname, protocol, port, path and any CGI arguments to the URL, as well as elements defined by the
Vary header to ensure that multiple URLs do not collide with one another.

Each character may be any one of 64-different characters, which mean that overall there are 64™22 possible hashes. For
example, a URL might be hashed to xyTGxSMO2b68mBCykgkplw. This hash is used as a prefix for the naming of
the files specific to that URL within the cache, however first it is split up into directories as per the CACHEDIRLEVELS
and CACHEDIRLENGTH directives.

CACHEDIRLEVELS specifies how many levels of subdirectory there should be, and CACHEDIRLENGTH specifies
how many characters should be in each directory. With the example settings given above, the hash would be turned
into a filename prefix as /var/cache/apache/x/y/TGxSMO2b68mBCykgkplw.

The overall aim of this technique is to reduce the number of subdirectories or files that may be in a particular directory,
as most file-systems slow down as this number increases. With setting of "1" for CACHEDIRLENGTH there can at
most be 64 subdirectories at any particular level. With a setting of 2 there can be 64 * 64 subdirectories, and so on.
Unless you have a good reason not to, using a setting of "1" for CACHEDIRLENGTH is recommended.

48 CHAPTER 2. USING THE APACHE HTTP SERVER

Setting CACHEDIRLEVELS depends on how many files you anticipate to store in the cache. With the setting of "2"
used in the above example, a grand total of 4096 subdirectories can ultimately be created. With 1 million files cached,
this works out at roughly 245 cached URLs per directory.

Each URL uses at least two files in the cache-store. Typically there is a ".header" file, which includes meta-
information about the URL, such as when it is due to expire and a ".data" file which is a verbatim copy of the
content to be served.

In the case of a content negotiated via the " Vary" header, a ".vary" directory will be created for the URL in question.
This directory will have multiple ".data" files corresponding to the differently negotiated content.

Maintaining the Disk Cache

The MOD_CACHE_DISK module makes no attempt to regulate the amount of disk space used by the cache, although it
will gracefully stand down on any disk error and behave as if the cache was never present.

Instead, provided with httpd is the htcacheclean (p. 319) tool which allows you to clean the cache periodically. De-
termining how frequently to run htcacheclean (p. 319) and what target size to use for the cache is somewhat complex
and trial and error may be needed to select optimal values.

htcacheclean (p. 319) has two modes of operation. It can be run as persistent daemon, or periodically from cron.
htcacheclean (p. 319) can take up to an hour or more to process very large (tens of gigabytes) caches and if you are
running it from cron it is recommended that you determine how long a typical run takes, to avoid running more than
one instance at a time.

It is also recommended that an appropriate "nice" level is chosen for htcacheclean so that the tool does not cause
excessive disk io while the server is running.

2.6. CACHING GUIDE

Filesystem size

49

Interval between
htcacheclean runs

€

>

Figure I: Typical cache growth / clean sequence.

Because MOD_CACHE_DISK does not itself pay attention to how much space is used you should ensure that ht-
cacheclean (p. 319) is configured to leave enough " grow room" following a clean.

Two-state Key/Value Shared Object Caching

Related Modules
MOD_AUTHN_SOCACHE
MOD_SOCACHE_DBM
MOD_SOCACHE_DC
MOD_SOCACHE_MEMCACHE
MOD_SOCACHE_SHMCB
MOD_SSL

Related Directives
AUTHNCACHESOCACHE
SSLSESSIONCACHE
SSLSTAPLINGCACHE

The Apache HTTP server offers a low level shared object cache for caching information such as SSL sessions, or
authentication credentials, within the socache (p. 114) interface.

Additional modules are provided for each implementation, offering the following backends:

50 CHAPTER 2. USING THE APACHE HTTP SERVER

MOD_SOCACHE_DBM DBM based shared object cache.
MOD_SOCACHE_DC Distcache based shared object cache.
MOD_SOCACHE_MEMCACHE Memcache based shared object cache.

MOD_SOCACHE_SHMCB Shared memory based shared object cache.

Caching Authentication Credentials

Related Modules Related Directives
MOD_AUTHN_SOCACHE AUTHNCACHESOCACHE

The MOD_AUTHN_SOCACHE module allows the result of authentication to be cached, relieving load on authentication
backends.

Caching SSL Sessions
Related Modules Related Directives
MOD_SSL SSLSESSIONCACHE

SSLSTAPLINGCACHE

The MOD_SSL module uses the socache interface to provide a session cache and a stapling cache.

Specialized File Caching

Related Modules Related Directives
MOD _FILE_CACHE CACHEFILE
MMAPFILE

On platforms where a filesystem might be slow, or where file handles are expensive, the option exists to pre-load files
into memory on startup.

On systems where opening files is slow, the option exists to open the file on startup and cache the file handle. These
options can help on systems where access to static files is slow.

File-Handle Caching

The act of opening a file can itself be a source of delay, particularly on network filesystems. By maintaining a
cache of open file descriptors for commonly served files, httpd can avoid this delay. Currently httpd provides one
implementation of File-Handle Caching.

CacheFile

The most basic form of caching present in httpd is the file-handle caching provided by MOD_FILE_CACHE. Rather
than caching file-contents, this cache maintains a table of open file descriptors. Files to be cached in this manner are
specified in the configuration file using the CACHEFILE directive.

The CACHEFILE directive instructs httpd to open the file when it is started and to re-use this file-handle for all subse-
quent access to this file.

2.6. CACHING GUIDE 51
CacheFile /usr/local/apache2/htdocs/index.html

If you intend to cache a large number of files in this manner, you must ensure that your operating system’s limit for
the number of open files is set appropriately.

Although using CACHEFILE does not cause the file-contents to be cached per-se, it does mean that if the file changes
while httpd is running these changes will not be picked up. The file will be consistently served as it was when httpd
was started.

If the file is removed while httpd is running, it will continue to maintain an open file descriptor and serve the file as it
was when httpd was started. This usually also means that although the file will have been deleted, and not show up on
the filesystem, extra free space will not be recovered until httpd is stopped and the file descriptor closed.

In-Memory Caching

Serving directly from system memory is universally the fastest method of serving content. Reading files from a disk
controller or, even worse, from a remote network is orders of magnitude slower. Disk controllers usually involve
physical processes, and network access is limited by your available bandwidth. Memory access on the other hand can
take mere nano-seconds.

System memory isn’t cheap though, byte for byte it’s by far the most expensive type of storage and it’s important to
ensure that it is used efficiently. By caching files in memory you decrease the amount of memory available on the
system. As we’ll see, in the case of operating system caching, this is not so much of an issue, but when using httpd’s
own in-memory caching it is important to make sure that you do not allocate too much memory to a cache. Otherwise
the system will be forced to swap out memory, which will likely degrade performance.

Operating System Caching
Almost all modern operating systems cache file-data in memory managed directly by the kernel. This is a powerful

feature, and for the most part operating systems get it right. For example, on Linux, let’s look at the difference in the
time it takes to read a file for the first time and the second time;

colm@coroebus:~$ time cat testfile > /dev/null

real Om0.065s
user Om0.000s
sys Om0.001s
colm@coroebus:™$ time cat testfile > /dev/null
real Om0.003s
user Om0.003s
SyS Om0.000s

Even for this small file, there is a huge difference in the amount of time it takes to read the file. This is because the
kernel has cached the file contents in memory.

By ensuring there is "spare" memory on your system, you can ensure that more and more file-contents will be stored
in this cache. This can be a very efficient means of in-memory caching, and involves no extra configuration of httpd at
all.

Additionally, because the operating system knows when files are deleted or modified, it can automatically remove file
contents from the cache when necessary. This is a big advantage over httpd’s in-memory caching which has no way
of knowing when a file has changed.

Despite the performance and advantages of automatic operating system caching there are some circumstances in which
in-memory caching may be better performed by httpd.

52 CHAPTER 2. USING THE APACHE HTTP SERVER

MMapFile Caching

MOD_FILE_CACHE provides the MMAPFILE directive, which allows you to have httpd map a static file’s contents into
memory at start time (using the mmap system call). httpd will use the in-memory contents for all subsequent accesses
to this file.

MMapFile /usr/local/apache2/htdocs/index.html

As with the CACHEFILE directive, any changes in these files will not be picked up by httpd after it has started.

The MMAPFILE directive does not keep track of how much memory it allocates, so you must ensure not to over-use
the directive. Each httpd child process will replicate this memory, so it is critically important to ensure that the files
mapped are not so large as to cause the system to swap memory.

Security Considerations
Authorization and Access Control

Using MOD_CACHE in its default state where CACHEQUICKHANDLER is set to On is very much like having a caching
reverse-proxy bolted to the front of the server. Requests will be served by the caching module unless it determines that
the origin server should be queried just as an external cache would, and this drastically changes the security model of
httpd.

As traversing a filesystem hierarchy to examine potential .htaccess files would be a very expensive operation,
partially defeating the point of caching (to speed up requests), MOD_CACHE makes no decision about whether a
cached entity is authorised for serving. In other words; if MOD_CACHE has cached some content, it will be served
from the cache as long as that content has not expired.

If, for example, your configuration permits access to a resource by IP address you should ensure that this content is
not cached. You can do this by using the CACHEDISABLE directive, or MOD_EXPIRES. Left unchecked, MOD_CACHE
- very much like a reverse proxy - would cache the content when served and then serve it to any client, on any IP
address.

When the CACHEQUICKHANDLER directive is set to Of £, the full set of request processing phases are executed and
the security model remains unchanged.

Local exploits

As requests to end-users can be served from the cache, the cache itself can become a target for those wishing to deface
or interfere with content. It is important to bear in mind that the cache must at all times be writable by the user which
httpd is running as. This is in stark contrast to the usually recommended situation of maintaining all content unwritable
by the Apache user.

If the Apache user is compromised, for example through a flaw in a CGI process, it is possible that the cache may be
targeted. When using MOD_CACHE_DISK, it is relatively easy to insert or modify a cached entity.

This presents a somewhat elevated risk in comparison to the other types of attack it is possible to make as the Apache
user. If you are using MOD_CACHE_DISK you should bear this in mind - ensure you upgrade httpd when security
upgrades are announced and run CGI processes as a non-Apache user using suEXEC (p. 115) if possible.

Cache Poisoning

When running httpd as a caching proxy server, there is also the potential for so-called cache poisoning. Cache Poi-
soning is a broad term for attacks in which an attacker causes the proxy server to retrieve incorrect (and usually
undesirable) content from the origin server.

2.6. CACHING GUIDE 53

For example if the DNS servers used by your system running httpd are vulnerable to DNS cache poisoning, an attacker
may be able to control where httpd connects to when requesting content from the origin server. Another example is
so-called HTTP request-smuggling attacks.

This document is not the correct place for an in-depth discussion of HTTP request smuggling (instead, try your
favourite search engine) however it is important to be aware that it is possible to make a series of requests, and to
exploit a vulnerability on an origin webserver such that the attacker can entirely control the content retrieved by the

Proxy.

Denial of Service / Cachebusting

The Vary mechanism allows multiple variants of the same URL to be cached side by side. Depending on header values
provided by the client, the cache will select the correct variant to return to the client. This mechanism can become a
problem when an attempt is made to vary on a header that is known to contain a wide range of possible values under
normal use, for example the User—-Agent header. Depending on the popularity of the particular web site thousands
or millions of duplicate cache entries could be created for the same URL, crowding out other entries in the cache.

In other cases, there may be a need to change the URL of a particular resource on every request, usually by adding a
"cachebuster" string to the URL. If this content is declared cacheable by a server for a significant freshness lifetime,
these entries can crowd out legitimate entries in a cache. While MOD_CACHE provides a CACHEIGNOREURLSES-
SIONIDENTIFIERS directive, this directive should be used with care to ensure that downstream proxy or browser caches
aren’t subjected to the same denial of service issue.

54 CHAPTER 2. USING THE APACHE HTTP SERVER

2.7 Server-Wide Configuration

This document explains some of the directives provided by the CORE server which are used to configure the basic
operations of the server.

Server Identification

Related Modules Related Directives
SERVERNAME
SERVERADMIN
SERVERSIGNATURE
SERVERTOKENS
USECANONICALNAME
USECANONICALPHYSICALPORT

The SERVERADMIN and SERVERTOKENS directives control what information about the server will be presented in
server-generated documents such as error messages. The SERVERTOKENS directive sets the value of the Server HTTP
response header field.

The SERVERNAME, USECANONICALNAME and USECANONICALPHYSICALPORT directives are used by the server
to determine how to construct self-referential URLs. For example, when a client requests a directory, but does not
include the trailing slash in the directory name, httpd must redirect the client to the full name including the trailing
slash so that the client will correctly resolve relative references in the document.

File Locations

Related Modules Related Directives
COREDUMPDIRECTORY
DOCUMENTROOT
ERRORLOG
MUTEX
PIDFILE
SCOREBOARDFILE
SERVERROOT

These directives control the locations of the various files that httpd needs for proper operation. When the pathname
used does not begin with a slash (/), the files are located relative to the SERVERROOT. Be careful about locating files
in paths which are writable by non-root users. See the security tips (p. 364) documentation for more details.

2.7. SERVER-WIDE CONFIGURATION 55

Limiting Resource Usage

Related Modules Related Directives
LIMITREQUESTBODY
LIMITREQUESTFIELDS
LIMITREQUESTFIELDSIZE
LIMITREQUESTLINE
RLIMITCPU
RLIMITMEM
RLIMITNPROC
THREADSTACKSIZE

The LIMITREQUEST* directives are used to place limits on the amount of resources httpd will use in reading requests
from clients. By limiting these values, some kinds of denial of service attacks can be mitigated.

The RLIMIT* directives are used to limit the amount of resources which can be used by processes forked off from the
httpd children. In particular, this will control resources used by CGI scripts and SSI exec commands.

The THREADSTACKSIZE directive is used with some platforms to control the stack size.

Implementation Choices

Related Modules Related Directives
MUTEX

The MUTEX directive can be used to change the underlying implementation used for mutexes, in order to relieve
functional or performance problems with APR’s default choice.

56 CHAPTER 2. USING THE APACHE HTTP SERVER

2.8 Log Files

In order to effectively manage a web server, it is necessary to get feedback about the activity and performance of the
server as well as any problems that may be occurring. The Apache HTTP Server provides very comprehensive and
flexible logging capabilities. This document describes how to configure its logging capabilities, and how to understand
what the logs contain.

Overview

Related Modules Related Directives
MOD_LOG_CONFIG

MOD_LOG_FORENSIC

MOD_LOGIO

MOD_CGI

The Apache HTTP Server provides a variety of different mechanisms for logging everything that happens on your
server, from the initial request, through the URL mapping process, to the final resolution of the connection, including
any errors that may have occurred in the process. In addition to this, third-party modules may provide logging capa-
bilities, or inject entries into the existing log files, and applications such as CGI programs, or PHP scripts, or other
handlers, may send messages to the server error log.

In this document we discuss the logging modules that are a standard part of the http server.

Security Warning

Anyone who can write to the directory where Apache httpd is writing a log file can almost certainly gain access to the
uid that the server is started as, which is normally root. Do NOT give people write access to the directory the logs are
stored in without being aware of the consequences; see the security tips (p. 364) document for details.

In addition, log files may contain information supplied directly by the client, without escaping. Therefore, it is possible
for malicious clients to insert control-characters in the log files, so care must be taken in dealing with raw logs.

Error Log
Related Modules Related Directives
CORE ERRORLOG
ERRORLOGFORMAT
LOGLEVEL

The server error log, whose name and location is set by the ERRORLOG directive, is the most important log file. This
is the place where Apache httpd will send diagnostic information and record any errors that it encounters in processing
requests. It is the first place to look when a problem occurs with starting the server or with the operation of the server,
since it will often contain details of what went wrong and how to fix it.

The error log is usually written to a file (typically error_log on Unix systems and error.log on Windows and
0S/2). On Unix systems it is also possible to have the server send errors to sys1log or pipe them to a program.

The format of the error log is defined by the ERRORLOGFORMAT directive, with which you can customize what values
are logged. A default is format defined if you don’t specify one. A typical log message follows:

2.8. LOG FILES 57

[Fri Sep 09 10:42:29.902022 2011] [core:error] [pid 35708:tid
4328636416] [client 72.15.99.187] File does not exist:
/usr/local/apache2/htdocs/favicon.ico

The first item in the log entry is the date and time of the message. The next is the module producing the message (core,
in this case) and the severity level of that message. This is followed by the process ID and, if appropriate, the thread
ID, of the process that experienced the condition. Next, we have the client address that made the request. And finally
is the detailed error message, which in this case indicates a request for a file that did not exist.

A very wide variety of different messages can appear in the error log. Most look similar to the example above. The
error log will also contain debugging output from CGI scripts. Any information written to stderr by a CGI script
will be copied directly to the error log.

Putting a $L token in both the error log and the access log will produce a log entry ID with which you can correlate
the entry in the error log with the entry in the access log. If MOD_UNIQUE_ID is loaded, its unique request ID will be
used as the log entry ID, too.

During testing, it is often useful to continuously monitor the error log for any problems. On Unix systems, you can
accomplish this using:

’tail -f error_log

Per-module logging

The LOGLEVEL directive allows you to specify a log severity level on a per-module basis. In this way, if you are
troubleshooting a problem with just one particular module, you can turn up its logging volume without also getting
the details of other modules that you’re not interested in. This is particularly useful for modules such as MOD_PROXY
or MOD_REWRITE where you want to know details about what it’s trying to do.

Do this by specifying the name of the module in your LOGLEVEL directive:
LogLevel info rewrite:traceb

This sets the main LOGLEVEL to info, but turns it up to t race5 for MOD_REWRITE.

:)This replaces the per-module logging directives, such as RewriteLog, that were present in
earlier versions of the server.

Access Log
Related Modules Related Directives
MOD_LOG_CONFIG CusTOMLOG
MOD _SETENVIF LOGFORMAT

SETENVIF

The server access log records all requests processed by the server. The location and content of the access log are
controlled by the CUSTOMLOG directive. The LOGFORMAT directive can be used to simplify the selection of the
contents of the logs. This section describes how to configure the server to record information in the access log.

Of course, storing the information in the access log is only the start of log management. The next step is to analyze this
information to produce useful statistics. Log analysis in general is beyond the scope of this document, and not really

58 CHAPTER 2. USING THE APACHE HTTP SERVER

part of the job of the web server itself. For more information about this topic, and for applications which perform log
analysis, check the Open Directory'®.

Various versions of Apache httpd have used other modules and directives to control access logging, including
mod_log_referer, mod_log_agent, and the TransferLog directive. The CUSTOMLOG directive now subsumes the
functionality of all the older directives.

The format of the access log is highly configurable. The format is specified using a format string that looks much like
a C-style printf(1) format string. Some examples are presented in the next sections. For a complete list of the possible
contents of the format string, see the MOD_LOG_CONFIG format strings (p. 705) .

Common Log Format

A typical configuration for the access log might look as follows.

LogFormat "%h %1 %u %t \"%r\" %>s %b" common
CustomLog "logs/access_log" common

This defines the nickname common and associates it with a particular log format string. The format string consists of
percent directives, each of which tell the server to log a particular piece of information. Literal characters may also be
placed in the format string and will be copied directly into the log output. The quote character (") must be escaped
by placing a backslash before it to prevent it from being interpreted as the end of the format string. The format string
may also contain the special control characters "\n" for new-line and "\t " for tab.

The CUSTOMLOG directive sets up a new log file using the defined nickname. The filename for the access log is
relative to the SERVERROOT unless it begins with a slash.

The above configuration will write log entries in a format known as the Common Log Format (CLF). This standard
format can be produced by many different web servers and read by many log analysis programs. The log file entries
produced in CLF will look something like this:

127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] "GET /apache_pb.gif
HTTP/1.0" 200 2326

Each part of this log entry is described below.

127.0.0.1 (%h) This is the IP address of the client (remote host) which made the request to the server. If HOST-
NAMELOOKUPS is set to On, then the server will try to determine the hostname and log it in place of the IP
address. However, this configuration is not recommended since it can significantly slow the server. Instead, it
is best to use a log post-processor such as logresolve to determine the hostnames. The IP address reported
here is not necessarily the address of the machine at which the user is sitting. If a proxy server exists between
the user and the server, this address will be the address of the proxy, rather than the originating machine.

—(%1) The "hyphen" in the output indicates that the requested piece of information is not available. In this case, the
information that is not available is the RFC 1413 identity of the client determined by identd on the clients
machine. This information is highly unreliable and should almost never be used except on tightly controlled
internal networks. Apache httpd will not even attempt to determine this information unless IDENTITYCHECK is
set to On.

frank ($u) This is the userid of the person requesting the document as determined by HTTP authentication. The
same value is typically provided to CGI scripts in the REMOTE_USER environment variable. If the status code
for the request (see below) is 401, then this value should not be trusted because the user is not yet authenticated.
If the document is not password protected, this part will be "—" just like the previous one.

16http://dmoz.org/Computers/Software/Internet/Site_Management/Log_Analysis/

http://dmoz.org/Computers/Software/Internet/Site_Management/Log_Analysis/

2.8. LOG FILES 59

[10/0ct/2000:13:55:36 —0700] (%t) The time that the request was received. The format is:

[day/month/year:hour:minute:second zone]
day = 2xdigit

month = 3xletter

year = 4xdigit

hour = 2xdigit

minute = 2xdigit
second = 2xdigit
zone = (“+' | ‘-=') 4xdigit

It is possible to have the time displayed in another format by specifying ${format }t in the log format string,
where format is either as in strftime (3) from the C standard library, or one of the supported special
tokens. For details see the MOD_LOG_CONFIG format strings (p. 705) .

"GET /apache pb.gif HTTP/1.0" (\"%r\") The request line from the client is given in double quotes. The
request line contains a great deal of useful information. First, the method used by the client is GET. Second, the
client requested the resource /apache_pb.qgif, and third, the client used the protocol HTTP /1. 0. It is also
possible to log one or more parts of the request line independently. For example, the format string "$m %U%q
$H" will log the method, path, query-string, and protocol, resulting in exactly the same output as "$r".

200 (%>s) This is the status code that the server sends back to the client. This information is very valuable, because
it reveals whether the request resulted in a successful response (codes beginning in 2), a redirection (codes
beginning in 3), an error caused by the client (codes beginning in 4), or an error in the server (codes beginning
in 5). The full list of possible status codes can be found in the HTTP speciﬁcation17 (RFC2616 section 10).

2326 (%b) The last part indicates the size of the object returned to the client, not including the response headers. If
no content was returned to the client, this value will be "—-". To log "0" for no content, use $B instead.

Combined Log Format

Another commonly used format string is called the Combined Log Format. It can be used as follows.

LogFormat "%h %1 %u %t \"%$r\" %>s %$b \"%${Referer}i\" \"%${User-agent}i\"" combined
CustomLog "log/access_log" combined

This format is exactly the same as the Common Log Format, with the addition of two more fields. Each of the
additional fields uses the percent-directive ${header}i, where header can be any HTTP request header. The access
log under this format will look like:

127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] "GET /apache_pb.gif
HTTP/1.0" 200 2326 "http://www.example.com/start.html" "Mozilla/4.08
[en] (Win98; I ;Nav)"

The additional fields are:

"http://www.example.com/start.html" (\"%{Referer}i\") The "Referer" (sic) HTTP request
header. This gives the site that the client reports having been referred from. (This should be the page that
links to or includes /apache pb.gif).

"Mozilla/4.08 [en] (Win98; I ;Nav)" (\"%{User-agent}i\") The User-Agent HTTP request
header. This is the identifying information that the client browser reports about itself.

Thttp://www.w3.org/Protocols/rfc2616/rfc2616.txt

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

60 CHAPTER 2. USING THE APACHE HTTP SERVER

Multiple Access Logs

Multiple access logs can be created simply by specifying multiple CUSTOMLOG directives in the configuration file.
For example, the following directives will create three access logs. The first contains the basic CLF information, while
the second and third contain referer and browser information. The last two CUSTOMLOG lines show how to mimic
the effects of the ReferLog and Agent Log directives.

LogFormat "%h %1 %$u %t \"%$r\" %>s $b" common
CustomLog "logs/access_log" common

CustomLog "logs/referer_log" "%${Referer}i -> %U"
CustomLog "logs/agent_log" "%{User—agent}i"

This example also shows that it is not necessary to define a nickname with the LOGFORMAT directive. Instead, the
log format can be specified directly in the CUSTOMLOG directive.

Conditional Logs

There are times when it is convenient to exclude certain entries from the access logs based on characteristics of
the client request. This is easily accomplished with the help of environment variables (p. 92) . First, an environment
variable must be set to indicate that the request meets certain conditions. This is usually accomplished with SETENVIF.
Then the env= clause of the CUSTOMLOG directive is used to include or exclude requests where the environment
variable is set. Some examples:

Mark requests from the loop-back interface
SetEnvIf Remote_Addr "127\.0\.0\.1" dontlog

Mark requests for the robots.txt file
SetEnvIf Request_URI ""/robots\.txt$" dontlog

Log what remains

CustomLog "logs/access_log" common env=!dontlog

As another example, consider logging requests from english-speakers to one log file, and non-english speakers to a
different log file.

SetEnvIf Accept-Language "en" english
CustomLog "logs/english_log" common env=english
CustomLog "logs/non_english_log" common env=!english

In a caching scenario one would want to know about the efficiency of the cache. A very simple method to find this out
would be:

SetEnv CACHE_MISS 1
LogFormat "%$h %1 %u %t "%r " %>s %b ${CACHE_MISS}e" common-cache
CustomLog "logs/access_log" common—-cache

MOD_CACHE will run before MOD_ENV and, when successful, will deliver the content without it. In that case a cache
hit will log —, while a cache miss will log 1.

In addition to the env= syntax, LOGFORMAT supports logging values conditional upon the HTTP response code:

LogFormat "%$400,501{User-agent}i" browserlog
LogFormat "%$!200,304,302{Referer}i" refererlog

2.8. LOG FILES 61

In the first example, the User—agent will be logged if the HTTP status code is 400 or 501. In other cases, a literal
"-" will be logged instead. Likewise, in the second example, the Referer will be logged if the HTTP status code is
not 200, 204, or 302. (Note the "!" before the status codes.

Although we have just shown that conditional logging is very powerful and flexible, it is not the only way to control
the contents of the logs. Log files are more useful when they contain a complete record of server activity. It is often
easier to simply post-process the log files to remove requests that you do not want to consider.

Log Rotation

On even a moderately busy server, the quantity of information stored in the log files is very large. The access log file
typically grows 1 MB or more per 10,000 requests. It will consequently be necessary to periodically rotate the log
files by moving or deleting the existing logs. This cannot be done while the server is running, because Apache httpd
will continue writing to the old log file as long as it holds the file open. Instead, the server must be restarted (p. 29)
after the log files are moved or deleted so that it will open new log files.

By using a graceful restart, the server can be instructed to open new log files without losing any existing or pending
connections from clients. However, in order to accomplish this, the server must continue to write to the old log files
while it finishes serving old requests. It is therefore necessary to wait for some time after the restart before doing any
processing on the log files. A typical scenario that simply rotates the logs and compresses the old logs to save space
is:

mv access_log access_log.old
mv error_log error_log.old
apachectl graceful

sleep 600

gzip access_log.old error_log.old

Another way to perform log rotation is using piped logs as discussed in the next section.

Piped Logs

Apache httpd is capable of writing error and access log files through a pipe to another process, rather than directly
to a file. This capability dramatically increases the flexibility of logging, without adding code to the main server. In
order to write logs to a pipe, simply replace the filename with the pipe character " | ", followed by the name of the
executable which should accept log entries on its standard input. The server will start the piped-log process when the
server starts, and will restart it if it crashes while the server is running. (This last feature is why we can refer to this
technique as "reliable piped logging".)

Piped log processes are spawned by the parent Apache httpd process, and inherit the userid of that process. This means
that piped log programs usually run as root. It is therefore very important to keep the programs simple and secure.

One important use of piped logs is to allow log rotation without having to restart the server. The Apache HTTP Server
includes a simple program called rotatelogs for this purpose. For example, to rotate the logs every 24 hours, you
can use:

CustomLog "|/usr/local/apache/bin/rotatelogs /var/log/access_log 86400" common

Notice that quotes are used to enclose the entire command that will be called for the pipe. Although these examples
are for the access log, the same technique can be used for the error log.

As with conditional logging, piped logs are a very powerful tool, but they should not be used where a simpler solution
like off-line post-processing is available.

62 CHAPTER 2. USING THE APACHE HTTP SERVER

By default the piped log process is spawned without invoking a shell. Use " | $" instead of " | " to spawn using a shell
(usually with /bin/sh -c):

Invoke "rotatelogs" using a shell
CustomLog "|$/usr/local/apache/bin/rotatelogs /var/log/access_log 86400" common

This was the default behaviour for Apache 2.2. Depending on the shell specifics this might lead to an additional shell
process for the lifetime of the logging pipe program and signal handling problems during restart. For compatibility
reasons with Apache 2.2 the notation " | | " is also supported and equivalent to using " | ".

:> Windows note

Note that on Windows, you may run into problems when running many piped log-

ger processes, especially when HTTPD is running as a service. This is caused by

running out of desktop heap space. The desktop heap space given to each ser-

vice is specified by the third argument to the SharedSectionparameter in the
HKEY_LOCAL_MACHINE\ System\ CurrentControlSet\ Control\ SessionManager\ SubSystems\ Windows
registry value.Change this value with care; the normal caveats for changing the Windows

registry apply, but you might also exhaust the desktop heap pool if the number is adjusted too

high.

Virtual Hosts

When running a server with many virtual hosts (p. 124) , there are several options for dealing with log files. First,
it is possible to use logs exactly as in a single-host server. Simply by placing the logging directives outside the
<VIRTUALHOST> sections in the main server context, it is possible to log all requests in the same access log and
error log. This technique does not allow for easy collection of statistics on individual virtual hosts.

If CUSTOMLOG or ERRORLOG directives are placed inside a <VIRTUALHOST> section, all requests or errors for
that virtual host will be logged only to the specified file. Any virtual host which does not have logging directives will
still have its requests sent to the main server logs. This technique is very useful for a small number of virtual hosts,
but if the number of hosts is very large, it can be complicated to manage. In addition, it can often create problems with
insufficient file descriptors (p. 144) .

For the access log, there is a very good compromise. By adding information on the virtual host to the log format string,
it is possible to log all hosts to the same log, and later split the log into individual files. For example, consider the
following directives.

LogFormat "%v %1 %$u %t \"%r\" %>s $b" comonvhost
CustomLog "logs/access_log" comonvhost

The v is used to log the name of the virtual host that is serving the request. Then a program like split-logfile (p. 334)
can be used to post-process the access log in order to split it into one file per virtual host.

Other Log Files

Related Modules Related Directives

MOD_LOGIO LOGFORMAT

MOD_LOG_CONFIG BUFFEREDLOGS

MOD_LOG_FORENSIC FORENSICLOG

MOD_CGI PIDFILE
SCRIPTLOG
SCRIPTLOGBUFFER

SCRIPTLOGLENGTH

2.8. LOG FILES 63

Logging actual bytes sent and received

MOD_LOGIO adds in two additional LOGFORMAT fields (%I and %0) that log the actual number of bytes received and
sent on the network.

Forensic Logging

MOD_LOG_FORENSIC provides for forensic logging of client requests. Logging is done before and after processing
a request, so the forensic log contains two log lines for each request. The forensic logger is very strict with no
customizations. It can be an invaluable debugging and security tool.

PID File

On startup, Apache httpd saves the process id of the parent httpd process to the file Logs/httpd.pid. This filename
can be changed with the PIDFILE directive. The process-id is for use by the administrator in restarting and terminating
the daemon by sending signals to the parent process; on Windows, use the -k command line option instead. For more
information see the Stopping and Restarting (p. 29) page.

Script Log

In order to aid in debugging, the SCRIPTLOG directive allows you to record the input to and output from CGI scripts.
This should only be used in testing - not for live servers. More information is available in the mod_cgi (p. 580)
documentation.

64 CHAPTER 2. USING THE APACHE HTTP SERVER
2.9 Mapping URL:s to Filesystem Locations

This document explains how the Apache HTTP Server uses the URL of a request to determine the filesystem location
from which to serve a file.

Related Modules and Directives

Related Modules
MOD_ACTIONS
MOD_ALIAS
MOD_AUTOINDEX
MOD_DIR
MOD_IMAGEMAP
MOD _NEGOTIATION
MOD_PROXY
MOD_REWRITE
MOD_SPELING

MOD _USERDIR
MOD_VHOST_ALIAS

Related Directives

ALIAS

ALIASMATCH

CHECKSPELLING
DIRECTORYINDEX
DOCUMENTROOT
ERRORDOCUMENT

OPTIONS

PROXYPASS

PROXYPASSREVERSE
PROXYPASSREVERSECOOKIEDOMAIN
PROXYPASSREVERSECOOKIEPATH

REDIRECT
REDIRECTMATCH
REWRITECOND
REWRITERULE
SCRIPTALIAS
SCRIPTALIASMATCH
USERDIR

DocumentRoot

In deciding what file to serve for a given request, httpd’s default behavior is to take the URL-Path for the request (the
part of the URL following the hostname and port) and add it to the end of the DOCUMENTROOT specified in your
configuration files. Therefore, the files and directories underneath the DOCUMENTROOT make up the basic document
tree which will be visible from the web.

For example, if ~DOCUMENTROOT were set to /var/www/html then a request
for http://www.example.com/fish/guppies.html would result in the file
/var/www/html/fish/guppies.html being served to the requesting client.

If a directory is requested (i.e. a path ending with /), the file served from that directory is defined by the DIRECTO-
RYINDEX directive. For example, if DocumentRoot were set as above, and you were to set:

DirectoryIndex index.html index.php

Then a request for http://www.example.com/fish/ will cause httpd to attempt to serve the file
/var/www/html/fish/index.html. In the event that that file does not exist, it will next attempt to serve
the file /var/www/html/fish/index.php.

If neither of these files existed, the next step is to attempt to provide a directory index, if MOD_AUTOINDEX is loaded
and configured to permit that.

httpd is also capable of Virtual Hosting (p. 124) , where the server receives requests for more than one host. In this
case, a different DOCUMENTROOT can be specified for each virtual host, or alternatively, the directives provided by

2.9. MAPPING URLS TO FILESYSTEM LOCATIONS 65

the module MOD_VHOST_ALIAS can be used to dynamically determine the appropriate place from which to serve
content based on the requested IP address or hostname.

The DOCUMENTROOT directive is set in your main server configuration file (ht tpd. conf) and, possibly, once per
additional Virtual Host (p. 124) you create.

Files Outside the DocumentRoot

There are frequently circumstances where it is necessary to allow web access to parts of the filesystem that are not
strictly underneath the DOCUMENTROOT. httpd offers several different ways to accomplish this. On Unix sys-
tems, symbolic links can bring other parts of the filesystem under the DOCUMENTROOT. For security reasons, httpd
will follow symbolic links only if the OPTIONS setting for the relevant directory includes FollowSymLinks or
SymLinksIfOwnerMatch.

Alternatively, the ALIAS directive will map any part of the filesystem into the web space. For example, with
Alias "/docs" "/var/web"

the URL http://www.example.com/docs/dir/file.html will be served from
/var/web/dir/file.html. The SCRIPTALIAS directive works the same way, with the additional
effect that all content located at the target path is treated as CGI scripts.

For situations where you require additional flexibility, you can use the ALIASMATCH and SCRIPTALIASMATCH
directives to do powerful regular expression based matching and substitution. For example,

ScriptAliasMatch """/~ ([a-zA-Z0-9]+) /cgi-bin/ (.+)" "/home/$1/cgi-bin/S$2"

will map a request to http://example.com/ user/cgi-bin/script.cgi to the path
/home /user/cgi-bin/script.cgi and will treat the resulting file as a CGI script.

User Directories

Traditionally on Unix systems, the home directory of a particular user can be referred to as “user/. The module
MOD_USERDIR extends this idea to the web by allowing files under each user’s home directory to be accessed using
URLSs such as the following.

http://www.example.com/ user/file.html

For security reasons, it is inappropriate to give direct access to a user’s home directory from the web. There-
fore, the USERDIR directive specifies a directory underneath the user’s home directory where web files are lo-
cated. Using the default setting of Userdir public_html, the above URL maps to a file at a directory like
/home/user/public_html/file.html where /home/user/ is the user’s home directory as specified in
/etc/passwd.

There are also several other forms of the Userdir directive which you can use on systems where /etc/passwd
does not contain the location of the home directory.

Some people find the "™" symbol (which is often encoded on the web as $7e) to be awkward and prefer to use an
alternate string to represent user directories. This functionality is not supported by mod_userdir. However, if users’
home directories are structured in a regular way, then it is possible to use the ALIASMATCH directive to achieve
the desired effect. For example, to make http://www.example.com/upages/user/file.html map to
/home /user/public_html/file.html, use the following A1liasMatch directive:

AliasMatch """ /upages/ ([a—zA-Z0-9]1+) (/ (.*))28" "/home/$1/public_html/$3"

66 CHAPTER 2. USING THE APACHE HTTP SERVER

URL Redirection

The configuration directives discussed in the above sections tell httpd to get content from a specific place in the
filesystem and return it to the client. Sometimes, it is desirable instead to inform the client that the requested content is
located at a different URL, and instruct the client to make a new request with the new URL. This is called redirection
and is implemented by the REDIRECT directive. For example, if the contents of the directory /foo/ under the
DOCUMENTROOT are moved to the new directory /bar/, you can instruct clients to request the content at the new
location as follows:

Redirect permanent "/foo/" "http://www.example.com/bar/"

This will redirect any URL-Path starting in /foo/ to the same URL path on the www .example . com server with
/bar/ substituted for /foo/. You can redirect clients to any server, not only the origin server.

httpd also provides a REDIRECTMATCH directive for more complicated rewriting problems. For example, to redirect
requests for the site home page to a different site, but leave all other requests alone, use the following configuration:

RedirectMatch permanent ""/S$" "http://www.example.com/startpage.html"
Alternatively, to temporarily redirect all pages on one site to a particular page on another site, use the following:

RedirectMatch temp ".x" "http://othersite.example.com/startpage.html"

Reverse Proxy

httpd also allows you to bring remote documents into the URL space of the local server. This technique is called
reverse proxying because the web server acts like a proxy server by fetching the documents from a remote server
and returning them to the client. It is different from normal (forward) proxying because, to the client, it appears the
documents originate at the reverse proxy server.

In the following example, when clients request documents under the / foo/ directory, the server fetches those docu-
ments from the /bar/ directory on internal.example.com and returns them to the client as if they were from
the local server.

ProxyPass "/foo/" "http://internal.example.com/bar/"
ProxyPassReverse "/foo/" "http://internal.example.com/bar/"
ProxyPassReverseCookieDomain internal.example.com public.example.com
ProxyPassReverseCookiePath "/foo/" "/bar/"

The PROXYPASS configures the server to fetch the appropriate documents, while the PROXYPASSREVERSE direc-
tive rewrites redirects originating at internal.example . com so that they target the appropriate directory on the
local server. Similarly, the PROXYPASSREVERSECOOKIEDOMAIN and PROXYPASSREVERSECOOKIEPATH rewrite
cookies set by the backend server.

It is important to note, however, that links inside the documents will not be rewritten. So any absolute links on
internal.example.com will result in the client breaking out of the proxy server and requesting directly from
internal.example.com. You can modify these links (and other content) in a page as it is being served to the
client using MOD_SUBSTITUTE.

Substitute s/internal\.example\.com/www.example.com/1i

For more sophisticated rewriting of links in HTML and XHTML, the MOD_PROXY_HTML module is also available. It
allows you to create maps of URLSs that need to be rewritten, so that complex proxying scenarios can be handled.

2.9. MAPPING URLS TO FILESYSTEM LOCATIONS 67

Rewriting Engine

When even more powerful substitution is required, the rewriting engine provided by MOD_REWRITE can be useful.
The directives provided by this module can use characteristics of the request such as browser type or source IP address
in deciding from where to serve content. In addition, mod_rewrite can use external database files or programs to
determine how to handle a request. The rewriting engine is capable of performing all three types of mappings discussed
above: internal redirects (aliases), external redirects, and proxying. Many practical examples employing mod_rewrite
are discussed in the detailed mod_rewrite documentation (p. 146) .

File Not Found

Inevitably, URLs will be requested for which no matching file can be found in the filesystem. This can happen for
several reasons. In some cases, it can be a result of moving documents from one location to another. In this case, it is
best to use URL redirection to inform clients of the new location of the resource. In this way, you can assure that old
bookmarks and links will continue to work, even though the resource is at a new location.

Another common cause of "File Not Found" errors is accidental mistyping of URLs, either directly in the browser,
or in HTML links. httpd provides the module MOD_SPELING (sic) to help with this problem. When this module is
activated, it will intercept "File Not Found" errors and look for a resource with a similar filename. If one such file is
found, mod_speling will send an HTTP redirect to the client informing it of the correct location. If several "close"
files are found, a list of available alternatives will be presented to the client.

An especially useful feature of mod_speling, is that it will compare filenames without respect to case. This can help
systems where users are unaware of the case-sensitive nature of URLs and the unix filesystem. But using mod_speling
for anything more than the occasional URL correction can place additional load on the server, since each "incorrect"
request is followed by a URL redirection and a new request from the client.

MOD_DIR provides FALLBACKRESOURCE, which can be used to map virtual URIs to a real resource, which then
serves them. This is a very useful replacement to MOD_REWRITE when implementing a ’front controller’

If all attempts to locate the content fail, httpd returns an error page with HTTP status code 404 (file not found). The
appearance of this page is controlled with the ERRORDOCUMENT directive and can be customized in a flexible manner
as discussed in the Custom error responses (p. 85) document.

Other URL Mapping Modules

Other modules available for URL mapping include:

e MOD_ACTIONS - Maps a request to a CGI script based on the request method, or resource MIME type.
e MOD_DIR - Provides basic mapping of a trailing slash into an index file such as index.html.

e MOD_IMAGEMAP - Maps a request to a URL based on where a user clicks on an image embedded in a HTML
document.

e MOD_NEGOTIATION - Selects an appropriate document based on client preferences such as language or content
compression.

68 CHAPTER 2. USING THE APACHE HTTP SERVER

2.10 Dynamic Shared Object (DSO) Support

The Apache HTTP Server is a modular program where the administrator can choose the functionality to include in
the server by selecting a set of modules. Modules will be compiled as Dynamic Shared Objects (DSOs) that exist
separately from the main httpd binary file. DSO modules may be compiled at the time the server is built, or they
may be compiled and added at a later time using the Apache Extension Tool (apxs).

Alternatively, the modules can be statically compiled into the ht t pd binary when the server is built.

This document describes how to use DSO modules as well as the theory behind their use.

Implementation
Related Modules Related Directives
MOD_SO LOADMODULE

The DSO support for loading individual Apache httpd modules is based on a module named MOD_SO which must
be statically compiled into the Apache httpd core. It is the only module besides CORE which cannot be put into a
DSO itself. Practically all other distributed Apache httpd modules will then be placed into a DSO. After a module is
compiled into a DSO named mod_foo. so you can use MOD_SO’s LOADMODULE directive in your httpd.conf
file to load this module at server startup or restart.

The DSO builds for individual modules can be disabled via configure’s ——enable-mods-static option as
discussed in the install documentation (p. 22) .

To simplify this creation of DSO files for Apache httpd modules (especially for third-party modules) a support program
named apxs (APache eXtenSion) is available. It can be used to build DSO based modules outside of the Apache httpd
source tree. The idea is simple: When installing Apache HTTP Server the configure’smake install procedure
installs the Apache httpd C header files and puts the platform-dependent compiler and linker flags for building DSO
files into the apx s program. This way the user can use apxs to compile his Apache httpd module sources without the
Apache httpd distribution source tree and without having to fiddle with the platform-dependent compiler and linker
flags for DSO support.

Usage Summary

To give you an overview of the DSO features of Apache HTTP Server 2.x, here is a short and concise summary:

1. Build and install a distributed Apache httpd module, say mod_foo. c, into its own DSO mod_foo. so:

$./configure —--prefix=/path/to/install —--enable-foo
$ make install

2. Configure Apache HTTP Server with all modules enabled. Only a basic set will be loaded during server
startup. You can change the set of loaded modules by activating or deactivating the LOADMODULE directives
inhttpd.conf.

$./configure —--enable-mods-shared=all

$ make install

2.10. DYNAMIC SHARED OBJECT (DSO) SUPPORT 69

3. Some modules are only useful for developers and will not be build. when using the module set a/l. To build all
available modules including developer modules use reallyall. In addition the LOADMODULE directives for all
built modules can be activated via the configure option ——enable-load-all-modules.

$./configure --enable-mods-shared=reallyall
——enable—-load-all-modules

$ make install

4. Build and install a third-party Apache httpd module, say mod_foo. ¢, into its own DSO mod_foo . so outside
of the Apache httpd source tree using apxs:

$ cd /path/to/3rdparty
$ apxs -cia mod_foo.c

In all cases, once the shared module is compiled, you must use a LOADMODULE directive in httpd. conf to tell
Apache httpd to activate the module.

See the apxs documentation (p. 303) for more details.

Background

On modern Unix derivatives there exists a mechanism called dynamic linking/loading of Dynamic Shared Objects
(DSO) which provides a way to build a piece of program code in a special format for loading it at run-time into the
address space of an executable program.

This loading can usually be done in two ways: automatically by a system program called 1d . so when an executable
program is started or manually from within the executing program via a programmatic system interface to the Unix
loader through the system calls dlopen () /dlsym ().

In the first way the DSO’s are usually called shared libraries or DSO libraries and named libfoo.so or
libfoo.so.1.2. They reside in a system directory (usually /usr/11ib) and the link to the executable program
is established at build-time by specifying —1foo to the linker command. This hard-codes library references into the
executable program file so that at start-time the Unix loader is able to locate 1ibfoo.so in /usr/1lib, in paths
hard-coded via linker-options like —R or in paths configured via the environment variable LD_LIBRARY_PATH. It then
resolves any (yet unresolved) symbols in the executable program which are available in the DSO.

Symbols in the executable program are usually not referenced by the DSO (because it’s a reusable library of general
code) and hence no further resolving has to be done. The executable program has no need to do anything on its own
to use the symbols from the DSO because the complete resolving is done by the Unix loader. (In fact, the code to
invoke 1d.so is part of the run-time startup code which is linked into every executable program which has been
bound non-static). The advantage of dynamic loading of common library code is obvious: the library code needs to be
stored only once, in a system library like 1ibc. so, saving disk space for every program.

In the second way the DSO’s are usually called shared objects or DSO files and can be named with an arbitrary
extension (although the canonical name is foo.so). These files usually stay inside a program-specific directory
and there is no automatically established link to the executable program where they are used. Instead the executable
program manually loads the DSO at run-time into its address space via dlopen (). At this time no resolving of
symbols from the DSO for the executable program is done. But instead the Unix loader automatically resolves any
(yet unresolved) symbols in the DSO from the set of symbols exported by the executable program and its already
loaded DSO libraries (especially all symbols from the ubiquitous 1ibc. so). This way the DSO gets knowledge of
the executable program’s symbol set as if it had been statically linked with it in the first place.

Finally, to take advantage of the DSO’s API the executable program has to resolve particular symbols from the DSO
viadlsym () for later use inside dispatch tables etc. In other words: The executable program has to manually resolve

70 CHAPTER 2. USING THE APACHE HTTP SERVER

every symbol it needs to be able to use it. The advantage of such a mechanism is that optional program parts need not
be loaded (and thus do not spend memory) until they are needed by the program in question. When required, these
program parts can be loaded dynamically to extend the base program’s functionality.

Although this DSO mechanism sounds straightforward there is at least one difficult step here: The resolving of symbols
from the executable program for the DSO when using a DSO to extend a program (the second way). Why? Because
"reverse resolving" DSO symbols from the executable program’s symbol set is against the library design (where the
library has no knowledge about the programs it is used by) and is neither available under all platforms nor standardized.
In practice the executable program’s global symbols are often not re-exported and thus not available for use in a DSO.
Finding a way to force the linker to export all global symbols is the main problem one has to solve when using DSO
for extending a program at run-time.

The shared library approach is the typical one, because it is what the DSO mechanism was designed for, hence it is
used for nearly all types of libraries the operating system provides.

Advantages and Disadvantages

The above DSO based features have the following advantages:

e The server package is more flexible at run-time because the server process can be assembled at run-time via
LOADMODULE httpd.conf configuration directives instead of configure options at build-time. For in-
stance, this way one is able to run different server instances (standard & SSL version, minimalistic & dynamic
version [mod_perl, mod_php], efc.) with only one Apache httpd installation.

e The server package can be easily extended with third-party modules even after installation. This is a great
benefit for vendor package maintainers, who can create an Apache httpd core package and additional packages
containing extensions like PHP, mod_perl, mod _security, etc.

e Easier Apache httpd module prototyping, because with the DSO/apxs pair you can both work outside the
Apache httpd source tree and only need an apxs —i command followed by an apachectl restart to
bring a new version of your currently developed module into the running Apache HTTP Server.

DSO has the following disadvantages:

e The server is approximately 20% slower at startup time because of the symbol resolving overhead the Unix
loader now has to do.

e The server is approximately 5% slower at execution time under some platforms, because position independent
code (PIC) sometimes needs complicated assembler tricks for relative addressing, which are not necessarily as
fast as absolute addressing.

e Because DSO modules cannot be linked against other DSO-based libraries (1d —1foo) on all platforms (for
instance a.out-based platforms usually don’t provide this functionality while ELF-based platforms do) you can-
not use the DSO mechanism for all types of modules. Or in other words, modules compiled as DSO files are
restricted to only use symbols from the Apache httpd core, from the C library (1ibc) and all other dynamic or
static libraries used by the Apache httpd core, or from static library archives (1ibfoo.a) containing position
independent code. The only chances to use other code is to either make sure the httpd core itself already contains
a reference to it or loading the code yourself via dlopen ().

2.11. HTTP PROTOCOL COMPLIANCE 71

2.11 HTTP Protocol Compliance

This document describes the mechanism to set a policy for HTTP protocol compliance for a given URL space by the
origin servers or applications behind that URL space.

For those who may have received an error message from a rejected policy, and need to know what the policy rejection
means and what they might do to fix the error, each policy is described below.

See also

e Filters (p. 110)

Enforcing HTTP Protocol Compliance in Apache 2

Related Modules Related Directives

MOD_POLICY PoLICYCONDITIONAL
POLICYLENGTH
POLICYKEEPALIVE
POLICYTYPE
POLICYVARY
POLICYVALIDATION
POLICYNOCACHE
POLICYMAXAGE
POLICYVERSION

The HTTP protocol follows the robustness principle as described in RFC1122'8, which states "Be liberal in what
you accept, and conservative in what you send". As a result of this principle, HTTP clients will compensate for and
recover from incorrect or misconfigured responses, or responses that are uncacheable.

As a website is scaled up to face greater and greater traffic loads, suboptimal or misconfigured applications or server
configurations can threaten both the stability and scalability of the website, as well as the hosting costs associated with
it. A website can also scale up to face greater configuration complexity, and it can be increasingly difficult to detect
and keep track of suboptimally configured URL spaces on a given server.

Eventually a point is reached where the principle "conservative in what you send" needs to be enforced by the server
administrator.

The MOD_POLICY module provides a set of filters which can be applied to a server, allowing key features of the HTTP
protocol to be explicitly tested, and non compliant responses logged as warnings, or rejected outright as an error.
Each filter can be applied separately, allowing the administrator to pick and choose which policies should be enforced
depending on the circumstances of their environment.

The filters might be placed in testing and staging environments for the benefit of application and website developers, or
may be applied to production servers to protect infrastructure from systems outside the administrator’s direct control.

8http://tools.ietf.org/html/rfc1122

http://tools.ietf.org/html/rfc1122

72 CHAPTER 2. USING THE APACHE HTTP SERVER

Reverse Prﬂx'_..ﬁ

A ,
ﬁ%\m&m&nﬁm&m iy ~.%&xxxxxxxxxxxxxxxxxxxxxxxxxxx‘-m»-m SRR RN |

-a..*;ﬁ.;mxxw

|nysal
ayoes pow

Axoud ™ pow
ayoeo angnd

R mﬁ\‘h oo :-:-:-:-:.:-:L‘-ﬁ Mxxnmmmxﬁm S AR

Janges uoneodde
JHIVION
TYNOILIONDOD
NOILYdITYA
dALl
HL19N3
Aonod poLw

i

In the above example, an Apache httpd server has been placed between the application server and the internet at large,
and configured to cache responses from the application server. The MOD_POLICY filters have been added to enforce
support for cacheable content and conditional requests, ensuring that both MOD_CACHE and public caches on the
internet are fully able to cache content created by the restful application server efficiently.

Static Eewerﬁ i HTTP client

L R, (R B s request

BpuBy ynejsp
ayoed opgnd

P possadsaccoalis oo response

SHIVIOMN
TYNOILIONDD
NOILLYAITYA
AdAL
HLSDMN3T
Aonjod pol

[
|

In the above simpler example, a static server serving highly cacheable content has a set of policies applied to ensure
that the server configuration conforms to a minimum level of compliance.

2.11. HTTP PROTOCOL COMPLIANCE 73

Conditional Request Policy

Related Modules Related Directives
MOD_POLICY PoLICYCONDITIONAL

This policy will be rejected if the server does not correctly respond to a conditional request with the appropriate status
code.

Conditional requests form the mechanism by which an HTTP cache makes stale content fresh again, and particularly
for content with short freshness lifetimes, lack of support for conditional requests can add avoidable load to the server.

Most specifically, the existence of any of following headers in the request makes the request conditional:

If-Match If the provided ETag in the I f-Mat ch header does not match the ETag of the response, the server should
return 412 Precondition Failed. Full details of how to handle an I f-Match header can be found in

RFC2616 section 14.2419.

If-None-Match If the provided ETag in the If-None-Match header matches the ETag of the response,
the server should return either 304 Not Modified for GET/HEAD requests, or 412 Precondition
Failed for other methods. Full details of how to handle an I £f-None—-Mat ch header can be found in

RFC2616 section 14.2620.

If-Modified-Since If the provided date in the If-Modified-Since header is older than the
Last-Modified header of the response, the server should return 304 Not Modified. Full details of
how to handle an I f-Modified-Since header can be found in

RFC2616 section 14.252".

If-Unmodified-Since If the provided date in the If-Modified-Since header is newer than the
Last-Modified header of the response, the server should return 412 Precondition Failed. Full
details of how to handle an I £f-Unmodified-Since header can be found in

RFC2616 section 14.28%.
If-Range Ifthe provided ETag or date in the I f-Range header matches the ETag or Last-Modified of the response,

and a valid Range is present, the server should return 206 Partial Response. Full details of how to
handle an I f-Range header can be found in

RFC2616 section 14.27%.

If the response is detected to have been successful (a 2xx response), but was conditional and one of the responses
above was expected instead, this policy will be rejected. Responses that indicate a redirect or a failure of some kind
(3xx, 4xx, 5xx) will be ignored by this policy.

This policy is implemented by the POLICY_CONDITIONAL filter.

Content-Length Policy

Related Modules Related Directives
MOD_POLICY POLICYLENGTH

http://www.w3.org/Protocols/rfc2616/rfc2616-sec 14 html#sec14.24
2Ohttp://www.w3.org/Protocols/rfc2616/rfc2616-sec 14.html#sec14.26
21 http://www.w3.org/Protocols/rfc2616/rfc2616-sec 14 html#sec14.25
22http://www.w3.org/Protocols/rfc2616/rfc2616-sec 14 html#sec14.28
Bhttp://www.w3.org/Protocols/rfc2616/rfc2616-sec 14.html#sec14.27

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.28
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.27

74 CHAPTER 2. USING THE APACHE HTTP SERVER

This policy will be rejected if the server response does not contain an explicit Content-Length header.
There are a number of ways of determining the length of a response body, described in full in
RFC2616 section 4.4 Message Length?*.

When the Content-Length header is present, the size of the body is declared at the start of the response. If this
information is missing, an HTTP cache might choose to ignore the response, as it does not know in advance whether
the response will fit within the cache’s defined limits.

HTTP/1.1 defines the Transfer—-Encoding header as an alternative to Content—-Length, allowing the end of
the response to be indicated to the client without the client having to know the length beforehand. However, when
HTTP/1.0 requests are processed, and no Content-Length is specified, the only mechanism available to the server
to indicate the end of the request is to drop the connection. In an environment containing load balancers, this can cause
the keepalive mechanism to be bypassed.

If the response is detected to have been successful (a 2xx response), and has a response body (this excludes 204 No
Content), and the Content-Length header is missing, this policy will be rejected. Responses that indicate a
redirect or a failure of some kind (3xx, 4xx, 5xx) will be ignored by this policy.

m It should be noted that some modules, such as MOD_PROXY, add their own
Content-Length header should the response be small enough for it to have been possi-
ble to read the response lacking such a header in one go. This may cause small responses to
pass this policy, while larger responses may fail for the same URL.

This policy is implemented by the POLICY_LENGTH filter.

Content-Type Policy

Related Modules Related Directives
MOD_POLICY PoLICYTYPE

This policy will be rejected if the server response does not contain an explicit and syntactically correct
Content-Type header that matches the server defined pattern.

The media type of the body is placed in the Content-Type header, and the format of the header is described in full
in

RFC2616 section 3.7 Media Types®.

A syntactically valid content type might look as follows:

Content-Type: text/html; charset=is0-8859-1

Invalid content types might include:

invalid
Content-Type: foo
blank

Content-Type:

The server administrator has the option to restrict the policy to one or more specific types, or could specify a general
wildcard type such as x/ .

This policy is implemented by the POLICY_TYPE filter.

Z4http://www.w3.org/Protocols/rfc2616/rfc2616-sec . html#secs.4
LS http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.7

http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.7

2.11. HTTP PROTOCOL COMPLIANCE 75

Keepalive Policy
Related Modules Related Directives
MOD_POLICY POLICYKEEPALIVE

This policy will be rejected if the server response does not contain an explicit Content-Length header, or a
Transfer-Encoding of chunked.

There are a number of ways of determining the length of a response body, described in full in
RFC2616 section 4.4 Message Length?®.

When the Content-Length header is present, the size of the body is declared at the start of the response. HTTP/1.1
defines the Transfer-Encoding header as an alternative to Content—-Length, allowing the end of the response
to be indicated to the client without the client having to know the length beforehand. In the absence of these two
mechanisms, the only way for a server to indicate the end of the request is to drop the connection. In an environment
containing load balancers, this can cause the keepalive mechanism to be bypassed.

Most specifically, we follow these rules:

IF we have not marked this connection as errored;
and the client isn’t expecting 100-continue
and the response status does not require a close;

and the response body has a defined length due to the status code being 304 or 204, the request method being HEAD,
already having defined Content-Length or Transfer-Encoding: chunked, or the request version being HTTP/1.1
and thus capable of being set as chunked

THEN we support keepalive.

m The server may choose to turn off keepalive for various reasons, such as an imminent shutdown,
or a Connection: close from the client, or an HTTP/1.0 client request with a response with no
Content-Length, but for our purposes we only care that keepalive was possible from the
application, not that keepalive actually took place.

It should also be noted that the Apache httpd server includes a filter that adds chunked encoding to responses without
an explicit content length. This policy catches those cases where this filter is bypassed or not in effect.

This policy is implemented by the POLICY_KEEPALIVE filter.

Freshness Lifetime / Maxage Policy

Related Modules Related Directives
MOD_POLICY POLICYMAXAGE

This policy will be rejected if the server response does not have an explicit freshness lifetime at least as long as the
server defined limit, or if the freshness lifetime is calculated based on a heuristic.

Full details of how a freshness lifetime is calculated is described in full in

RFC2616 section 13.2 Expiration Model?’.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec html#secs.4
2Thttp://www.w3.org/Protocols/rfc2616/rfc2616-sec 13 html#sec13.2

http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.2

76 CHAPTER 2. USING THE APACHE HTTP SERVER

During the freshness lifetime, a cache does not need to contact the origin server at all, it can simply pass the cached
content as is back to the client.

When the freshness lifetime is reached, the cache should contact the origin server in an effort to check whether the
content is still fresh, and if not, replace the content.

When the freshness lifetime is too short, it can result in excessive load on the server. In addition, should an outage
occur that is as long or longer than the freshness lifetime, all cached content will become stale, which could cause a
thundering herd of traffic when the server or network returns.

This policy is implemented by the POLICY_MAXAGE filter.

No Cache Policy
Related Modules Related Directives
MOD_POLICY POLICYNOCACHE

This policy will be rejected if the server response declares itself uncacheable using either the Cache-Control or
Pragma headers.

Full details of how content may be declared uncacheable is described in full in
RFC2616 section 14.9.1 What is Cacheable?®, and within the definition for the P ragma header in
RFC2616 section 14.32 Pragma®.

Most specifically, should any of the following header combinations exist in the response headers, the response will be
rejected:

e Cache-Control: no—cache
e Cache-Control: no-store
e Cache-Control: private

e Pragma: no-cache

When unexpected, uncacheable content may produce unacceptable levels of server load, or may incur significant cost.
When this policy is enabled, all server defined uncacheable content will be rejected.

This policy is implemented by the POLICY_NOCACHE filter.

Validation Policy
Related Modules Related Directives
MOD_POLICY POLICYVALIDATION

This policy will be rejected if the server response does not contain either a syntactically correct ETag or
Last-Modified header.

The ETag header is described in full in
RFC2616 section 14.19 Etag®®, and the Last -Modi fied header is described in full in

Zhttp://www.w3.org/Protocols/rfc2616/rfc2616-sec 14 html#sec14.9.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec 14.html#sec14.32
3Onttp://www.w3.org/Protocols/rfc2616/rfc2616-sec 14.html#sec14.19

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19

2.11. HTTP PROTOCOL COMPLIANCE 77

RFC2616 section 14.29 Last-Modified®'.
In addition to being checked present, the headers are checked for syntax.

An ETag that is not surrounded with quotes, or is not declared "weak" by prefixing it with a "W/" will cause the
policy to be rejected. A Last-Modified thatis not parsed as a valid date will cause the policy to be rejected.

This policy is implemented by the POLICY_VALIDATION filter.

Vary Header Policy
Related Modules Related Directives
MOD_POLICY POLICYVARY

This policy will be rejected if the server response contains a Vary header, and that header in turn contains a header
blacklisted by the administrator.

The Vary header is described in full in
RFC2616 section 14.44 Vary32.

Some client provided headers, such as User—Agent, can contain thousands or millions of combinations of values
over a period of time, and if the response is declared cacheable, a cache might attempt to cache each of these responses
separately, filling up the cache and crowding out other entries in the cache. In this scenario, if so configured, the policy
will reject the response.

This policy is implemented by the POLICY_VARY filter.

Protocol Version Policy

Related Modules Related Directives
MOD_POLICY POLICYVERSION

This policy will be rejected if the client request was made with a version number lower than the version of HTTP
specified.

This policy is typically used with restful applications where control over the type of client is desired. This policy can
be used alongside the POLICY_KEEPALIVE filter to ensure that HTTP/1.0 clients don’t cause keepalive connections
to be dropped.

Possible minimum versions that could be specified are:

e HTTP/1.1
e HTTP/1.0
e HTTP/0.9

This policy is implemented by the POLICY_VERSON filter.

3http://www.w3.org/Protocols/rfc2616/rfc2616-sec 14.html#sec14.29
2http://www.w3.org/Protocols/rfc2616/rfc2616-sec 14 html#sec14.44

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.29
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44

78 CHAPTER 2. USING THE APACHE HTTP SERVER

2.12 Content Negotiation

Apache HTTPD supports content negotiation as described in the HTTP/1.1 specification. It can choose the best
representation of a resource based on the browser-supplied preferences for media type, languages, character set and
encoding. It also implements a couple of features to give more intelligent handling of requests from browsers that send
incomplete negotiation information.

Content negotiation is provided by the MOD_NEGOTIATION module, which is compiled in by default.

About Content Negotiation

A resource may be available in several different representations. For example, it might be available in different
languages or different media types, or a combination. One way of selecting the most appropriate choice is to give the
user an index page, and let them select. However it is often possible for the server to choose automatically. This works
because browsers can send, as part of each request, information about what representations they prefer. For example,
a browser could indicate that it would like to see information in French, if possible, else English will do. Browsers
indicate their preferences by headers in the request. To request only French representations, the browser would send

Accept-Language: fr

Note that this preference will only be applied when there is a choice of representations and they vary by language.

As an example of a more complex request, this browser has been configured to accept French and English, but prefer
French, and to accept various media types, preferring HTML over plain text or other text types, and preferring GIF or
JPEG over other media types, but also allowing any other media type as a last resort:

Accept-Language: fr; g=1.0, en; g=0.5
Accept: text/html; g=1.0, text/*; g=0.8, image/gif; g=0.6,

image/Jjpeg; g=0.6, image/*; g=0.5, x/*; g=0.1

httpd supports ’server driven’ content negotiation, as defined in the HTTP/1.1 specification. It fully supports the
Accept, Accept-Language, Accept-Charset and Accept-Encoding request headers. httpd also sup-
ports ’transparent’ content negotiation, which is an experimental negotiation protocol defined in RFC 2295 and RFC
2296. It does not offer support for ’feature negotiation’ as defined in these RFCs.

A resource is a conceptual entity identified by a URI (RFC 2396). An HTTP server like Apache HTTP Server provides
access to representations of the resource(s) within its namespace, with each representation in the form of a sequence
of bytes with a defined media type, character set, encoding, etc. Each resource may be associated with zero, one, or
more than one representation at any given time. If multiple representations are available, the resource is referred to
as negotiable and each of its representations is termed a variant. The ways in which the variants for a negotiable
resource vary are called the dimensions of negotiation.

Negotiation in httpd

In order to negotiate a resource, the server needs to be given information about each of the variants. This is done in
one of two ways:

e Using a type map (i.e., a » . var file) which names the files containing the variants explicitly, or

e Using a "MultiViews’ search, where the server does an implicit filename pattern match and chooses from among
the results.

2.12. CONTENT NEGOTIATION 79

Using a type-map file

A type map is a document which is associated with the handler named t ype-map (or, for backwards-compatibility
with older httpd configurations, the MIME-type application/x-type-map). Note that to use this feature, you
must have a handler set in the configuration that defines a file suffix as t ype—map; this is best done with

AddHandler type-map .var

in the server configuration file.

Type map files should have the same name as the resource which they are describing, followed by the extension . var.
In the examples shown below, the resource is named foo, so the type map file is named foo.var.

This file should have an entry for each available variant; these entries consist of contiguous HTTP-format header lines.
Entries for different variants are separated by blank lines. Blank lines are illegal within an entry. It is conventional to
begin a map file with an entry for the combined entity as a whole (although this is not required, and if present will be
ignored). An example map file is shown below.

URISs in this file are relative to the location of the type map file. Usually, these files will be located in the same directory
as the type map file, but this is not required. You may provide absolute or relative URIs for any file located on the
same server as the map file.

URI: foo

URI: foo.en.html

Content-type: text/html

Content-language: en

URI: foo.fr.de.html

Content-type: text/html;charset=iso-8859-2
Content-language: fr, de

Note also that a typemap file will take precedence over the filename’s extension, even when Multiviews is on. If the
variants have different source qualities, that may be indicated by the "qs" parameter to the media type, as in this
picture (available as JPEG, GIF, or ASCII-art):

URI: foo

URI: foo.Jjpeg

Content-type: 1image/jpeg; gs=0.8
URI: foo.gif

Content-type: 1image/gif; gs=0.5
URI: foo.txt

Content-type: text/plain; gs=0.01

gs values can vary in the range 0.000 to 1.000. Note that any variant with a qs value of 0.000 will never be chosen.
Variants with no ’qs’ parameter value are given a qs factor of 1.0. The qs parameter indicates the relative ’quality’
of this variant compared to the other available variants, independent of the client’s capabilities. For example, a JPEG
file is usually of higher source quality than an ASCII file if it is attempting to represent a photograph. However, if the
resource being represented is an original ASCII art, then an ASCII representation would have a higher source quality
than a JPEG representation. A gs value is therefore specific to a given variant depending on the nature of the resource
it represents.

The full list of headers recognized is available in the mod_negotiation typemap (p. 766) documentation.

80 CHAPTER 2. USING THE APACHE HTTP SERVER

Multiviews

MultiViews is a per-directory option, meaning it can be set with an OPTIONS directive within a <DIRECTORY >,
<LOCATION> or <FILES> section in httpd. conf, or (if ALLOWOVERRIDE is properly set) in . htaccess files.
Note that Options A1l does not set MultiViews; you have to ask for it by name.

The effect of Mult iViews is as follows: if the server receives a request for /some/dir/foo, if /some/dir has
MultiViews enabled, and /some/dir/foo does not exist, then the server reads the directory looking for files
named foo.*, and effectively fakes up a type map which names all those files, assigning them the same media types
and content-encodings it would have if the client had asked for one of them by name. It then chooses the best match
to the client’s requirements.

MultiViews may also apply to searches for the file named by the DIRECTORYINDEX directive, if the server is trying
to index a directory. If the configuration files specify

DirectoryIndex index

then the server will arbitrate between index.html and index.html3 if both are present. If neither are present,
and index.cgi is there, the server will run it.

If one of the files found when reading the directory does not have an extension recognized by mod_mime to designate
its Charset, Content-Type, Language, or Encoding, then the result depends on the setting of the MULTIVIEWSMATCH
directive. This directive determines whether handlers, filters, and other extension types can participate in MultiViews
negotiation.

The Negotiation Methods

After httpd has obtained a list of the variants for a given resource, either from a type-map file or from the filenames in
the directory, it invokes one of two methods to decide on the "best’ variant to return, if any. It is not necessary to know
any of the details of how negotiation actually takes place in order to use httpd’s content negotiation features. However
the rest of this document explains the methods used for those interested.

There are two negotiation methods:

1. Server driven negotiation with the httpd algorithm is used in the normal case. The httpd algorithm is ex-
plained in more detail below. When this algorithm is used, httpd can sometimes ’fiddle’ the quality factor of a
particular dimension to achieve a better result. The ways httpd can fiddle quality factors is explained in more
detail below.

2. Transparent content negotiation is used when the browser specifically requests this through the mechanism
defined in RFC 2295. This negotiation method gives the browser full control over deciding on the ’best’ variant,
the result is therefore dependent on the specific algorithms used by the browser. As part of the transparent
negotiation process, the browser can ask httpd to run the ’remote variant selection algorithm’ defined in RFC
2296.

Dimensions of Negotiation

Dimension Notes

Media Type Browser indicates preferences with the Accept header field. Each item can have an associated quality factor.
Variant description can also have a quality factor (the "qs" parameter).

Language Browser indicates preferences with the Accept-Language header field. Each item can have a quality factor.
Variants can be associated with none, one or more than one language.

Encoding Browser indicates preference with the Accept-Encoding header field. Each item can have a quality factor.

Charset Browser indicates preference with the Accept-Charset header field. Each item can have a quality factor.

Variants can indicate a charset as a parameter of the media type.

2.12. CONTENT NEGOTIATION 81

httpd Negotiation Algorithm

httpd can use the following algorithm to select the "best’ variant (if any) to return to the browser. This algorithm is not
further configurable. It operates as follows:

1. First, for each dimension of the negotiation, check the appropriate Accept* header field and assign a quality to
each variant. If the Accept™* header for any dimension implies that this variant is not acceptable, eliminate it. If
no variants remain, go to step 4.

2. Select the "best’ variant by a process of elimination. Each of the following tests is applied in order. Any variants
not selected at each test are eliminated. After each test, if only one variant remains, select it as the best match
and proceed to step 3. If more than one variant remains, move on to the next test.

(a) Multiply the quality factor from the Accept header with the quality-of-source factor for this variants
media type, and select the variants with the highest value.

(b) Select the variants with the highest language quality factor.

(c) Select the variants with the best language match, using either the order of languages in the
Accept-Language header (if present), or else the order of languages in the LanguagePriority
directive (if present).

(d) Select the variants with the highest ’level’ media parameter (used to give the version of text/html media
types).
(e) Select variants with the best charset media parameters, as given on the Accept—Charset header line.

Charset ISO-8859-1 is acceptable unless explicitly excluded. Variants with a text /+ media type but not
explicitly associated with a particular charset are assumed to be in ISO-8859-1.

(f) Select those variants which have associated charset media parameters that are not ISO-8859-1. If there are
no such variants, select all variants instead.

(g) Select the variants with the best encoding. If there are variants with an encoding that is acceptable to the
user-agent, select only these variants. Otherwise if there is a mix of encoded and non-encoded variants,
select only the unencoded variants. If either all variants are encoded or all variants are not encoded, select
all variants.

(h) Select the variants with the smallest content length.

(i) Select the first variant of those remaining. This will be either the first listed in the type-map file, or when
variants are read from the directory, the one whose file name comes first when sorted using ASCII code
order.

3. The algorithm has now selected one ’best’ variant, so return it as the response. The HTTP response header Vary
is set to indicate the dimensions of negotiation (browsers and caches can use this information when caching the
resource). End.

4. To get here means no variant was selected (because none are acceptable to the browser). Return a 406 status
(meaning "No acceptable representation”) with a response body consisting of an HTML document listing the
available variants. Also set the HTTP Vary header to indicate the dimensions of variance.

Fiddling with Quality Values

httpd sometimes changes the quality values from what would be expected by a strict interpretation of the httpd negoti-
ation algorithm above. This is to get a better result from the algorithm for browsers which do not send full or accurate
information. Some of the most popular browsers send Accept header information which would otherwise result in
the selection of the wrong variant in many cases. If a browser sends full and correct information these fiddles will not
be applied.

82 CHAPTER 2. USING THE APACHE HTTP SERVER

Media Types and Wildcards

The Accept : request header indicates preferences for media types. It can also include *wildcard’ media types, such
as "image/*" or "*/*" where the * matches any string. So a request including:

Accept: image/*, */*

would indicate that any type starting "image/" is acceptable, as is any other type. Some browsers routinely send
wildcards in addition to explicit types they can handle. For example:

Accept: text/html, text/plain, image/gif, image/Jjpeg, =*/=*

The intention of this is to indicate that the explicitly listed types are preferred, but if a different representation is
available, that is ok too. Using explicit quality values, what the browser really wants is something like:

Accept: text/html, text/plain, image/gif, image/jpeg, =*/%; g=0.01

The explicit types have no quality factor, so they default to a preference of 1.0 (the highest). The wildcard */* is given
a low preference of 0.01, so other types will only be returned if no variant matches an explicitly listed type.

If the Accept: header contains no q factors at all, httpd sets the q value of "*/*"_ if present, to 0.01 to emulate
the desired behavior. It also sets the q value of wildcards of the format "type/*" to 0.02 (so these are preferred over
matches against "*/*". If any media type on the Accept : header contains a q factor, these special values are not
applied, so requests from browsers which send the explicit information to start with work as expected.

Language Negotiation Exceptions

New in httpd 2.0, some exceptions have been added to the negotiation algorithm to allow graceful fallback when
language negotiation fails to find a match.

When a client requests a page on your server, but the server cannot find a single page that matches the
Accept-language sent by the browser, the server will return either a "No Acceptable Variant" or "Multiple
Choices" response to the client. To avoid these error messages, it is possible to configure httpd to ignore the
Accept—-language in these cases and provide a document that does not explicitly match the client’s request. The
FORCELANGUAGEPRIORITY directive can be used to override one or both of these error messages and substitute the
servers judgement in the form of the LANGUAGEPRIORITY directive.

The server will also attempt to match language-subsets when no other match can be found. For example, if a client
requests documents with the language en—GB for British English, the server is not normally allowed by the HTTP/1.1
standard to match that against a document that is marked as simply en. (Note that it is almost surely a configura-
tion error to include en—-GB and not en in the Accept-Language header, since it is very unlikely that a reader
understands British English, but doesn’t understand English in general. Unfortunately, many current clients have de-
fault configurations that resemble this.) However, if no other language match is possible and the server is about to
return a "No Acceptable Variants" error or fallback to the LANGUAGEPRIORITY, the server will ignore the subset
specification and match en—-GB against en documents. Implicitly, httpd will add the parent language to the client’s
acceptable language list with a very low quality value. But note that if the client requests "en-GB; q=0.9, fr; qg=0.8",
and the server has documents designated "en" and "fr", then the "fr" document will be returned. This is necessary
to maintain compliance with the HTTP/1.1 specification and to work effectively with properly configured clients.

In order to support advanced techniques (such as cookies or special URL-paths) to determine the user’s preferred
language, since httpd 2.0.47 MOD_NEGOTIATION recognizes the environment variable (p. 92) prefer-language.
If it exists and contains an appropriate language tag, MOD_NEGOTIATION will try to select a matching variant. If
there’s no such variant, the normal negotiation process applies.

2.12. CONTENT NEGOTIATION 83

Example

SetEnvIf Cookie "language=(.+)" prefer-language=5$1
Header append Vary cookie

Extensions to Transparent Content Negotiation

httpd extends the transparent content negotiation protocol (RFC 2295) as follows. A new {encoding ..} element
is used in variant lists to label variants which are available with a specific content-encoding only. The implementation
of the RVSA/1.0 algorithm (RFC 2296) is extended to recognize encoded variants in the list, and to use them as
candidate variants whenever their encodings are acceptable according to the Accept-Encoding request header.
The RVSA/1.0 implementation does not round computed quality factors to 5 decimal places before choosing the best
variant.

Note on hyperlinks and naming conventions

If you are using language negotiation you can choose between different naming conventions, because files can have
more than one extension, and the order of the extensions is normally irrelevant (see the mod_mime (p. 749) documen-
tation for details).

A typical file has a MIME-type extension (e.g., html), maybe an encoding extension (e.g., gz), and of course a
language extension (e.g., en) when we have different language variants of this file.

Examples:

e foo.en.html
e foo.html.en

e foo.en.html.gz

Here some more examples of filenames together with valid and invalid hyperlinks:

Filename Valid hyperlink Invalid hyperlink
foo.html.en foo -
foo.html
foo.en.html foo foo.html
foo.html.en.gz foo foo.gz
foo.html foo.html.gz
foo.en.html.gz foo foo.html
foo.html.gz
foo.gz
foo.gz.html.en foo foo.html
foo.gz
foo.gz.html
foo.html.gz.en foo foo.gz
foo.html
foo.html.gz

Looking at the table above, you will notice that it is always possible to use the name without any extensions in a
hyperlink (e.g., £oo). The advantage is that you can hide the actual type of a document rsp. file and can change it
later, e.g., from html to shtml or cgi without changing any hyperlink references.

If you want to continue to use a MIME-type in your hyperlinks (e.g. foo.html) the language extension (including an
encoding extension if there is one) must be on the right hand side of the MIME-type extension (e.g., foo.html.en).

84 CHAPTER 2. USING THE APACHE HTTP SERVER

Note on Caching

When a cache stores a representation, it associates it with the request URL. The next time that URL is requested, the
cache can use the stored representation. But, if the resource is negotiable at the server, this might result in only the
first requested variant being cached and subsequent cache hits might return the wrong response. To prevent this, httpd
normally marks all responses that are returned after content negotiation as non-cacheable by HTTP/1.0 clients. httpd
also supports the HTTP/1.1 protocol features to allow caching of negotiated responses.

For requests which come from a HTTP/1.0 compliant client (either a browser or a cache), the directive CACHENE-
GOTIATEDDOCS can be used to allow caching of responses which were subject to negotiation. This directive can be
given in the server config or virtual host, and takes no arguments. It has no effect on requests from HTTP/1.1 clients.

For HTTP/1.1 clients, httpd sends a Vary HTTP response header to indicate the negotiation dimensions for the
response. Caches can use this information to determine whether a subsequent request can be served from the local
copy. To encourage a cache to use the local copy regardless of the negotiation dimensions, set the force-no-vary
environment variable (p. 92) .

2.13. CUSTOM ERROR RESPONSES 85
2.13 Custom Error Responses

Although the Apache HTTP Server provides generic error responses in the event of 4xx or 5xx HTTP status codes,
these responses are rather stark, uninformative, and can be intimidating to site users. You may wish to provide custom
error responses which are either friendlier, or in some language other than English, or perhaps which are styled more
in line with your site layout.

Customized error responses can be defined for any HTTP status code designated as an error condition - that is, any
4xx or 5xX status.

Additionally, a set of values are provided, so that the error document can be customized further based on the values of
these variables, using Server Side Includes (p. 243) . Or, you can have error conditions handled by a cgi program, or
other dynamic handler (PHP, mod_perl, etc) which makes use of these variables.

Configuration

Custom error documents are configured using the ERRORDOCUMENT directive, which may be used in global, virtu-
alhost, or directory context. It may be used in .htaccess files if ALLOWOVERRIDE is set to FileInfo.

ErrorDocument 500 "Sorry, our script crashed. Oh dear"
ErrorDocument 500 /cgi-bin/crash-recover

ErrorDocument 500 http://error.example.com/server_error.html
ErrorDocument 404 /errors/not_found.html

ErrorDocument 401 /subscription/how_to_subscribe.html

The syntax of the ErrorDocument directive is:
ErrorDocument <3-digit-code> <action>
where the action will be treated as:

1. Alocal URL to redirect to (if the action begins with a "/").
2. An external URL to redirect to (if the action is a valid URL).

3. Text to be displayed (if none of the above). The text must be wrapped in quotes (") if it consists of more than
one word.

When redirecting to a local URL, additional environment variables are set so that the response can be further cus-
tomized. They are not sent to external URLs.

Available Variables

Redirecting to another URL can be useful, but only if some information can be passed which can then be used to
explain or log the error condition more clearly.

To achieve this, when the error redirect is sent, additional environment variables will be set, which will be generated
from the headers provided to the original request by prepending 'REDIRECT_’ onto the original header name. This
provides the error document the context of the original request.

For example, you might receive, in addition to more usual environment variables, the following.

86 CHAPTER 2. USING THE APACHE HTTP SERVER

REDIRECT_HTTP_ACCEPT=%*/%, image/gif, image/jpeg, image/png
REDIRECT_HTTP_USER.AGENT=Mozilla/5.0 Fedora/3.5.8-1.fcl2 Firefox/3.5.8
REDIRECT_PATH=.:/bin:/usr/local/bin:/sbin

REDIRECT_QUERY_STRING=

REDIRECT_REMOTE_ADDR=121.345.78.123
REDIRECT_REMOTE_HOST=client.example.com
REDIRECT_SERVER_NAME=www.example.edu

REDIRECT_SERVER_PORT=80

REDIRECT_SERVER_SOFTWARE=Apache/2.2.15

REDIRECT.URL=/cgi-bin/buggy.pl

REDIRECT. environment variables are created from the environment variables which existed prior to the redirect.
They are renamed with a REDIRECT._ prefix, i.e., HTTP_USER_AGENT becomes REDIRECT_HTTP_USER_AGENT.

REDIRECT._URL, REDIRECT_STATUS, and REDIRECT_QUERY_STRING are guaranteed to be set, and the other
headers will be set only if they existed prior to the error condition.

None of these will be set if the ERRORDOCUMENT target is an external redirect (anything starting with a scheme
name like http:, even if it refers to the same host as the server).

Customizing Error Responses

If you point your ErrorDocument to some variety of dynamic handler such as a server-side include document, CGI
script, or some variety of other handler, you may wish to use the available custom environment variables to customize
this response.

If the ErrorDocument specifies a local redirect to a CGI script, the script should include a "Status: " header field
in its output in order to ensure the propagation all the way back to the client of the error condition that caused it to be
invoked. For instance, a Perl ErrorDocument script might include the following:

print "Content-type: text/html\n";
printf "Status: %s Condition Intercepted\n", SENV{"REDIRECT_STATUS"};

If the script is dedicated to handling a particular error condition, such as 404NotFound, it can use the specific code
and error text instead.

Note that if the response contains Location: header (in order to issue a client-side redirect), the script must emit an
appropriate Status: header (such as 302Found). Otherwise the Locat ion: header may have no effect.

Multi Language Custom Error Documents

Provided with your installation of the Apache HTTP Server is a directory of custom error documents translated into 16
different languages. There’s also a configuration file in the conf /ext ra configuration directory that can be included
to enable this feature.

In your server configuration file, you’ll see a line such as:

Multi-language error messages
#Include conf/extra/httpd-multilang—errordoc.conf

Uncommenting this Include line will enable this feature, and provide language-negotiated error messages, based on
the language preference set in the client browser.

2.13. CUSTOM ERROR RESPONSES 87

Additionally, these documents contain various of the REDIRECT. variables, so that additional information can be
provided to the end-user about what happened, and what they can do now.

These documents can be customized to whatever degree you wish to provide more useful information to users about
your site, and what they can expect to find there.

MOD_INCLUDE and MOD_NEGOTIATION must be enabled to use this feature.

88 CHAPTER 2. USING THE APACHE HTTP SERVER
2.14 Binding to Addresses and Ports

Configuring Apache HTTP Server to listen on specific addresses and ports.

See also

e Virtual Hosts (p. 124)
e DNS Issues (p. 121)

Overview
Related Modules Related Directives
CORE <VIRTUALHOST>
MPM_COMMON LISTEN

When httpd starts, it binds to some port and address on the local machine and waits for incoming requests. By default,
it listens to all addresses on the machine. However, it may need to be told to listen on specific ports, or only on selected
addresses, or a combination of both. This is often combined with the Virtual Host (p. 124) feature, which determines
how httpd responds to different IP addresses, hostnames and ports.

The LISTEN directive tells the server to accept incoming requests only on the specified port(s) or address-and-port
combinations. If only a port number is specified in the LISTEN directive, the server listens to the given port on all
interfaces. If an IP address is given as well as a port, the server will listen on the given port and interface. Multiple
LISTEN directives may be used to specify a number of addresses and ports to listen on. The server will respond to
requests from any of the listed addresses and ports.

For example, to make the server accept connections on both port 80 and port 8000, on all interfaces, use:

Listen 80
Listen 8000

To make the server accept connections on port 80 for one interface, and port 8000 on another, use
Listen 192.0.2.1:80

Listen 192.0.2.5:8000

IPv6 addresses must be enclosed in square brackets, as in the following example:

Listen [2001:db8::a00:20ff:fea7:ccea] :80

m Overlapping LISTEN directives will result in a fatal error which will prevent the server from
starting up.

(48)Address already in use: make_sock: could not bind
to address [::]1:80

See the discussion in the wiki® for further troubleshooting tips.

“http://wiki.apache.org/httpd/CouldNotBindToAddress

http://wiki.apache.org/httpd/CouldNotBindToAddress

2.14. BINDING TO ADDRESSES AND PORTS 89

Special IPv6 Considerations

A growing number of platforms implement IPv6, and APR supports IPv6 on most of these platforms, allowing httpd
to allocate IPv6 sockets, and to handle requests sent over IPv6.

One complicating factor for httpd administrators is whether or not an IPv6 socket can handle both IPv4 connections
and IPv6 connections. Handling IPv4 connections with an IPv6 socket uses IPv4-mapped IPv6 addresses, which are
allowed by default on most platforms, but are disallowed by default on FreeBSD, NetBSD, and OpenBSD, in order to
match the system-wide policy on those platforms. On systems where it is disallowed by default, a special configure
parameter can change this behavior for httpd.

On the other hand, on some platforms, such as Linux and Tru64, the only way to handle both IPv6 and IPv4 is to
use mapped addresses. If you want httpd to handle [Pv4 and IPv6 connections with a minimum of sockets, which
requires using IPv4-mapped IPv6 addresses, specify the ——enable-v4-mapped configure option.

-—enable-v4-mapped is the default on all platforms except FreeBSD, NetBSD, and OpenBSD, so this is probably
how your httpd was built.

If you want httpd to handle IPv4 connections only, regardless of what your platform and APR will support, specify an
IPv4 address on all LISTEN directives, as in the following examples:

Listen 0.0.0.0:80
Listen 192.0.2.1:80

If your platform supports it and you want httpd to handle IPv4 and IPv6 connections on separate sockets (i.e., to disable
IPv4-mapped addresses), specify the ——disable-v4-mapped configure option. ——disable-v4-mapped
is the default on FreeBSD, NetBSD, and OpenBSD.

Specifying the protocol with Listen

The optional second protocol argument of LISTEN is not required for most configurations. If not specified, https
is the default for port 443 and http the default for all other ports. The protocol is used to determine which module
should handle a request, and to apply protocol specific optimizations with the ACCEPTFILTER directive.

You only need to set the protocol if you are running on non-standard ports. For example, running an https site on
port 8443:

Listen 192.170.2.1:8443 https

How This Works With Virtual Hosts

The LISTEN directive does not implement Virtual Hosts - it only tells the main server what addresses and ports to
listen on. If no <VIRTUALHOST> directives are used, the server will behave in the same way for all accepted
requests. However, <VIRTUALHOST> can be used to specify a different behavior for one or more of the addresses
or ports. To implement a VirtualHost, the server must first be told to listen to the address and port to be used. Then
a <VIRTUALHOST> section should be created for the specified address and port to set the behavior of this virtual
host. Note that if the <VIRTUALHOST> is set for an address and port that the server is not listening to, it cannot be
accessed.

90 CHAPTER 2. USING THE APACHE HTTP SERVER

2.15 Multi-Processing Modules (MPMs)

This document describes what a Multi-Processing Module is and how they are used by the Apache HTTP Server.

Introduction

The Apache HTTP Server is designed to be a powerful and flexible web server that can work on a very wide variety of
platforms in a range of different environments. Different platforms and different environments often require different
features, or may have different ways of implementing the same feature most efficiently. Apache httpd has always
accommodated a wide variety of environments through its modular design. This design allows the webmaster to
choose which features will be included in the server by selecting which modules to load either at compile-time or at
run-time.

Apache HTTP Server 2.0 extends this modular design to the most basic functions of a web server. The server ships
with a selection of Multi-Processing Modules (MPMs) which are responsible for binding to network ports on the
machine, accepting requests, and dispatching children to handle the requests.

Extending the modular design to this level of the server allows two important benefits:

e Apache httpd can more cleanly and efficiently support a wide variety of operating systems. In particular, the
Windows version of the server is now much more efficient, since MPM_WINNT can use native networking fea-
tures in place of the POSIX layer used in Apache httpd 1.3. This benefit also extends to other operating systems
that implement specialized MPMs.

e The server can be better customized for the needs of the particular site. For example, sites that need a great
deal of scalability can choose to use a threaded MPM like WORKER or EVENT, while sites requiring stability or
compatibility with older software can use a PREFORK.

At the user level, MPMs appear much like other Apache httpd modules. The main difference is that one and only one
MPM must be loaded into the server at any time. The list of available MPMs appears on the module index page (p.
1101).

MPM Defaults

The following table lists the default MPMs for various operating systems. This will be the MPM selected if you do
not make another choice at compile-time.

Netware MPM_NETWARE
0S/2 MPMT_0S2
Unix PREFORK, WORKER, or

EVENT, depending on
platform capabilities
Windows MPM_WINNT

:/>Here, ’Unix’ is used to mean Unix-like operating systems, such as Linux, BSD, Solaris, Mac
OS X, etc.

In the case of Unix, the decision as to which MPM is installed is based on two questions:

1. Does the system support threads?

2. Does the system support thread-safe polling (Specifically, the kqueue and epoll functions)?
If the answer to both questions is ’yes’, the default MPM is EVENT.

If The answer to #1 is "yes’, but the answer to #2 is 'no’, the default will be WORKER.

2.15. MULTI-PROCESSING MODULES (MPMS) 91

If the answer to both questions is 'no’, then the default MPM will be PREFORK.

In practical terms, this means that the default will almost always be EVENT, as all modern operating systems support
these two features.

Building an MPM as a static module
MPMs can be built as static modules on all platforms. A single MPM is chosen at build time and linked into the server.
The server must be rebuilt in order to change the MPM.

To override the default MPM choice, use the ——with-mpm=NAME option of the configure script. NAME is the
name of the desired MPM.

Once the server has been compiled, it is possible to determine which MPM was chosen by using . /httpd -1. This
command will list every module that is compiled into the server, including the MPM.

Building an MPM as a DSO module

On Unix and similar platforms, MPMs can be built as DSO modules and dynamically loaded into the server in the
same manner as other DSO modules. Building MPMs as DSO modules allows the MPM to be changed by updating
the LOADMODULE directive for the MPM instead of by rebuilding the server.

LoadModule mpm_prefork_module modules/mod_mpm_prefork.so

Attempting to LOADMODULE more than one MPM will result in a startup failure with the following error.

AH00534: httpd: Configuration error: More than one MPM loaded.

This feature is enabled using the ——enable-mpms—shared option of the configure script. With argument a 11,
all possible MPMs for the platform will be installed. Alternately, a list of MPMs can be specified as the argument.

The default MPM, either selected automatically or specified with the ——with—mpm option of the configure script,
will be loaded in the generated server configuration file. Edit the LOADMODULE directive to select a different MPM.

92 CHAPTER 2. USING THE APACHE HTTP SERVER

2.16 Environment Variables in Apache

There are two kinds of environment variables that affect the Apache HTTP Server.

First, there are the environment variables controlled by the underlying operating system. These are set before the
server starts. They can be used in expansions in configuration files, and can optionally be passed to CGI scripts and
SSI using the PassEnv directive.

Second, the Apache HTTP Server provides a mechanism for storing information in named variables that are also
called environment variables. This information can be used to control various operations such as logging or access
control. The variables are also used as a mechanism to communicate with external programs such as CGI scripts. This
document discusses different ways to manipulate and use these variables.

Although these variables are referred to as environment variables, they are not the same as the environment variables
controlled by the underlying operating system. Instead, these variables are stored and manipulated in an internal
Apache structure. They only become actual operating system environment variables when they are provided to CGI
scripts and Server Side Include scripts. If you wish to manipulate the operating system environment under which
the server itself runs, you must use the standard environment manipulation mechanisms provided by your operating
system shell.

Setting Environment Variables

Related Modules Related Directives
MOD_CACHE BROWSERMATCH
MOD_ENV BROWSERMATCHNOCASE
MOD_REWRITE PASSENV
MOD_SETENVIF REWRITERULE
MOD_UNIQUE_ID SETENV
SETENVIF
SETENVIFNOCASE
UNSETENV

Basic Environment Manipulation

The most basic way to set an environment variable in Apache is using the unconditional SETENV directive. Variables
may also be passed from the environment of the shell which started the server using the PASSENV directive.

Conditional Per-Request Settings

For additional flexibility, the directives provided by MOD_SETENVIF allow environment variables to be set on a per-
request basis, conditional on characteristics of particular requests. For example, a variable could be set only when
a specific browser (User-Agent) is making a request, or only when a specific Referer [sic] header is found. Even
more flexibility is available through the MOD_REWRITE’s REWRITERULE which uses the [E=...] option to set
environment variables.

Unique Identifiers

Finally, MOD_UNIQUE_ID sets the environment variable UNIQUE_ID for each request to a value which is guaranteed
to be unique across "all" requests under very specific conditions.

2.16. ENVIRONMENT VARIABLES IN APACHE 93

Standard CGI Variables

In addition to all environment variables set within the Apache configuration and passed from the shell, CGI scripts and
SSI pages are provided with a set of environment variables containing meta-information about the request as required
by the CGI specification?.

Some Caveats

e It is not possible to override or change the standard CGI variables using the environment manipulation directives.

e When suexec is used to launch CGI scripts, the environment will be cleaned down to a set of safe variables
before CGI scripts are launched. The list of safe variables is defined at compile-time in suexec. c.

e For portability reasons, the names of environment variables may contain only letters, numbers, and the un-
derscore character. In addition, the first character may not be a number. Characters which do not match this
restriction will be replaced by an underscore when passed to CGI scripts and SSI pages.

e A special case are HTTP headers which are passed to CGI scripts and the like via environment variables (see
below). They are converted to uppercase and only dashes are replaced with underscores; if the header contains
any other (invalid) character, the whole header is silently dropped. See below for a workaround.

e The SETENV directive runs late during request processing meaning that directives such as SETENVIF and
REWRITECOND will not see the variables set with it.

e When the server looks up a path via an internal subrequest such as looking for a DIRECTORYINDEX or gen-
erating a directory listing with MOD_AUTOINDEX, per-request environment variables are not inherited in the
subrequest. Additionally, SETENVIF directives are not separately evaluated in the subrequest due to the API
phases MOD_SETENVIF takes action in.

Using Environment Variables

Related Modules Related Directives

MOD_AUTHZ_HOST REQUIRE

MOD _CGI CusToMLOG

MOD _EXT_FILTER DENY

MOD_HEADERS EXTFILTERDEFINE

MOD_INCLUDE HEADER

MOD _LOG_CONFIG LOGFORMAT

MOD_REWRITE REWRITECOND
REWRITERULE

CGI Scripts
One of the primary uses of environment variables is to communicate information to CGI scripts. As discussed above,

the environment passed to CGI scripts includes standard meta-information about the request in addition to any variables
set within the Apache configuration. For more details, see the CGI tutorial (p. 236) .

SSI Pages

Server-parsed (SSI) documents processed by MOD_INCLUDE’s INCLUDES filter can print environment variables using
the echo element, and can use environment variables in flow control elements to makes parts of a page conditional on

Bhttp://www.ietf.org/rfc/rfc3875

http://www.ietf.org/rfc/rfc3875

94 CHAPTER 2. USING THE APACHE HTTP SERVER

characteristics of a request. Apache also provides SSI pages with the standard CGI environment variables as discussed
above. For more details, see the SSI tutorial (p. 243) .

Access Control

Access to the server can be controlled based on the value of environment variables using the allow from env=
and deny from env= directives. In combination with SETENVIF, this allows for flexible control of access to the
server based on characteristics of the client. For example, you can use these directives to deny access to a particular
browser (User-Agent).

Conditional Logging

Environment variables can be logged in the access log using the LOGFORMAT option $e. In addition, the decision on
whether or not to log requests can be made based on the status of environment variables using the conditional form
of the CUSTOMLOG directive. In combination with SETENVIF this allows for flexible control of which requests are
logged. For example, you can choose not to log requests for filenames ending in gi £, or you can choose to only log
requests from clients which are outside your subnet.

Conditional Response Headers

The HEADER directive can use the presence or absence of an environment variable to determine whether or not a
certain HTTP header will be placed in the response to the client. This allows, for example, a certain response header
to be sent only if a corresponding header is received in the request from the client.

External Filter Activation

External filters configured by MOD_EXT_FILTER using the EXTFILTERDEFINE directive can by activated conditional
on an environment variable using the disableenv= and enableenv= options.

URL Rewriting

The ${ENV: variable} form of TestString in the REWRITECOND allows MOD_REWRITE’s rewrite engine to make
decisions conditional on environment variables. Note that the variables accessible in MOD_REWRITE without the ENV :
prefix are not actually environment variables. Rather, they are variables special to MOD_REWRITE which cannot be
accessed from other modules.

Special Purpose Environment Variables

Interoperability problems have led to the introduction of mechanisms to modify the way Apache behaves when talking
to particular clients. To make these mechanisms as flexible as possible, they are invoked by defining environment
variables, typically with BROWSERMATCH, though SETENV and PASSENV could also be used, for example.

downgrade-1.0

This forces the request to be treated as a HTTP/1.0 request even if it was in a later dialect.

2.16. ENVIRONMENT VARIABLES IN APACHE 95
force-gzip

If you have the DEFLATE filter activated, this environment variable will ignore the accept-encoding setting of your
browser and will send compressed output unconditionally.

force-no-vary

This causes any Vary fields to be removed from the response header before it is sent back to the client. Some clients
don’t interpret this field correctly; setting this variable can work around this problem. Setting this variable also implies
force-response-1.0.

force-response-1.0

This forces an HTTP/1.0 response to clients making an HTTP/1.0 request. It was originally implemented as a result of
a problem with AOL’s proxies. Some HTTP/1.0 clients may not behave correctly when given an HTTP/1.1 response,
and this can be used to interoperate with them.

gzip-only-text/html

When set to a value of " 1", this variable disables the DEFLATE output filter provided by MOD_DEFLATE for content-
types other than text/html. If you’d rather use statically compressed files, MOD_NEGOTIATION evaluates the
variable as well (not only for gzip, but for all encodings that differ from "identity").

no-gzip

When set, the DEFLATE filter of MOD_DEFLATE will be turned off and MOD_NEGOTIATION will refuse to deliver
encoded resources.

no-cache

Available in versions 2.2.12 and later

When set, MOD_CACHE will not save an otherwise cacheable response. This environment variable does not influence
whether a response already in the cache will be served for the current request.

nokeepalive

This disables KEEPALIVE when set.

prefer-language

This influences MOD_NEGOTIATION’s behaviour. If it contains a language tag (such as en, ja or x-klingon),
MOD_NEGOTIATION tries to deliver a variant with that language. If there’s no such variant, the normal negotiation (p.
78) process applies.

96 CHAPTER 2. USING THE APACHE HTTP SERVER

redirect-carefully

This forces the server to be more careful when sending a redirect to the client. This is typically used when a client
has a known problem handling redirects. This was originally implemented as a result of a problem with Microsoft’s
WebFolders software which has a problem handling redirects on directory resources via DAV methods.

suppress-error-charset

Available in versions after 2.0.54

When Apache issues a redirect in response to a client request, the response includes some actual text to be displayed
in case the client can’t (or doesn’t) automatically follow the redirection. Apache ordinarily labels this text according
to the character set which it uses, which is ISO-8859-1.

However, if the redirection is to a page that uses a different character set, some broken browser versions will try to
use the character set from the redirection text rather than the actual page. This can result in Greek, for instance, being
incorrectly rendered.

Setting this environment variable causes Apache to omit the character set for the redirection text, and these broken
browsers will then correctly use that of the destination page.

m Security note

Sending error pages without a specified character set may allow a cross-site-scripting attack
for existing browsers (MSIE) which do not follow the HTTP/1.1 specification and attempt to
"guess" the character set from the content. Such browsers can be easily fooled into using the
UTF-7 character set, and UTF-7 content from input data (such as the request-URI) will not be
escaped by the usual escaping mechanisms designed to prevent cross-site-scripting attacks.

force-proxy-request-1.0, proxy-nokeepalive, proxy-sendchunked, proxy-sendcl, proxy-chain-auth, proxy-
interim-response, proxy-initial-not-pooled

These directives alter the protocol behavior of MOD_PROXY. See the MOD_PROXY and MOD_PROXY_HTTP documen-
tation for more details.

Examples
Passing broken headers to CGI scripts

Starting with version 2.4, Apache is more strict about how HTTP headers are converted to environment variables in
MOD_CGI and other modules: Previously any invalid characters in header names were simply translated to under-
scores. This allowed for some potential cross-site-scripting attacks via header injection (see Unusual Web Bugs,
slide 19/20).

If you have to support a client which sends broken headers and which can’t be fixed, a simple workaround involving
MOD_SETENVIF and MOD_HEADERS allows you to still accept these headers:

#

The following works around a client sending a broken Accept_Encoding
header.

#

34http://events.ccc.de/congress/2007/Fahrplan/events/2212.en.html

http://events.ccc.de/congress/2007/Fahrplan/events/2212.en.html

2.16. ENVIRONMENT VARIABLES IN APACHE 97

SetEnvIfNoCase “Accept.Encoding$ ~“(.*)$ fix_accept_encoding=$1
RequestHeader set Accept-Encoding ${fix_accept_encoding}le env=fix_accept_encoding

Changing protocol behavior with misbehaving clients

Earlier versions recommended that the following lines be included in httpd.conf to deal with known client problems.
Since the affected clients are no longer seen in the wild, this configuration is likely no-longer necessary.

The following directives modify normal HTTP response behavior.

The first directive disables keepalive for Netscape 2.x and browsers that
spoof it. There are known problems with these browser implementations.
The second directive is for Microsoft Internet Explorer 4.0b2

which has a broken HTTP/1.1 implementation and does not properly

support keepalive when it is used on 301 or 302 (redirect) responses.

S e 4k R S S 3 3

BrowserMatch "Mozilla/2" nokeepalive
BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

#

The following directive disables HTTP/1.1 responses to browsers which

are in violation of the HTTP/1.0 spec by not being able to understand a
basic 1.1 response.

#

BrowserMatch "RealPlayer 4\.0" force-response-1.0

BrowserMatch "Java/1\.0" force-response-1.0

BrowserMatch "JDK/1\.0" force-response-1.0

Do not log requests for images in the access log

This example keeps requests for images from appearing in the access log. It can be easily modified to prevent logging
of particular directories, or to prevent logging of requests coming from particular hosts.

SetEnvIf Request_URI \.gif image-request
SetEnvIf Request_URI \.]jpg image-request
SetEnvIf Request_URI \.png image-request
CustomLog "logs/access_log" common env=!image-request

Prevent "Image Theft"

This example shows how to keep people not on your server from using images on your server as inline-images on their
pages. This is not a recommended configuration, but it can work in limited circumstances. We assume that all your
images are in a directory called /web/images.

SetEnvIf Referer "“http://www\.example\.com/" local_referal
Allow browsers that do not send Referer info
SetEnvIf Referer ""$" local_referal
<Directory "/web/images">
Require env local_referal
</Directory>

98 CHAPTER 2. USING THE APACHE HTTP SERVER

For more information about this technique, see the "Keeping Your Images from Adorning Other Sites®" tutorial on
ServerWatch.

3Shttp://www.serverwatch.com/tutorials/article.php/1132731

http://www.serverwatch.com/tutorials/article.php/1132731

2.17. EXPRESSIONS IN APACHE HTTP SERVER 99
2.17 Expressions in Apache HTTP Server

Historically, there are several syntax variants for expressions used to express a condition in the different modules of the
Apache HTTP Server. There is some ongoing effort to only use a single variant, called ap_expr, for all configuration
directives. This document describes the ap_expr expression parser.

The ap_expr expression is intended to replace most other expression variants in HTTPD. For example, the deprecated
SSLREQUIRE expressions can be replaced by Require expr (p. 519) .

See also

o <IF>

e <ELSEIF>

e <ELSE>

e ERRORDOCUMENT

e ALIAS

e SCRIPTALIAS

e REDIRECT

e AUTHBASICFAKE

e AUTHFORMLOGINREQUIREDLOCATION
e AUTHFORMLOGINSUCCESSLOCATION
e AUTHFORMLOGOUTLOCATION
e AUTHNAME

e AUTHTYPE

e REWRITECOND

e SETENVIFEXPR

e HEADER

e REQUESTHEADER

e FILTERPROVIDER

e Require expr (p. 519)

e Require 1dap-user (p. 501)

e Require ldap-group (p. 501)

e Require 1dap-dn (p. 501)

e Require ldap-attribute (p. 501)
e Require ldap-filter (p. 501)

e Require ldap-search (p. 501)

e Require dbd-group (p. 527)

e Require dbm-group (p. 532)

e Require group (p. 534)

e Require host (p. 536)

e SSLREQUIRE

o LOGMESSAGE

e MOD_INCLUDE

100

Grammar in Backus-Naur Form notation

Backus-Naur Form®® (BNF) is a notation technique for context-free grammars, often used to describe the syntax of
languages used in computing. In most cases, expressions are used to express boolean values. For these, the starting
point in the BNF is expr. However, a few directives like LOGMESSAGE accept expressions that evaluate to a string

CHAPTER 2. USING THE APACHE HTTP SERVER

value. For those, the starting point in the BNF is string.

expr

comp

stringcomp

integercomp

wordlist

word

string

::= "true" | "false"
" ! " expr
expr "&&" expr
expr "||" expr
A (" eXpr ") A
comp
stringcomp
integercomp

unaryop word

word binaryop word
word "in" "{" wordlist
word "in" listfunction
word "="" regex

word "!"" regex

word "==" word

word "!=" word

word "<" word

word "<=" word

word ">" word

word ">=" word

word "-eq" word | word
word "-ne" word | word
word "-1t" word | word
word "-le" word | word
word "-gt" word | word
word "-ge" word | word
word

wordlist "," word

word "." word

digit

""" string "' "

""" string """
variable

rebackref

function

stringpart

string stringpart

36http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form

"}"

"eq"
"ne"
n lt n
n le"
"gt "
"ge"

word
word
word
word
word
word

http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form

2.17. EXPRESSIONS IN APACHE HTTP SERVER 101

stringpart = cstring
| variable
| rebackref
cstring HIHE N
digit c:= [0-9]+
variable 1= "%{" varname "}"
| "%${" funcname ":" funcargs "}"
rebackref = "$" [0-9]
function ::= funcname " (" wordlist ")"
listfunction ::= listfuncname " (" word ")"
Variables

The expression parser provides a number of variables of the form ${HTTP_HOST}. Note that the value of a variable
may depend on the phase of the request processing in which it is evaluated. For example, an expression used in an
<IF > directive is evaluated before authentication is done. Therefore, ${REMOTE_USER} will not be set in this case.

The following variables provide the values of the named HTTP request headers. The values of other headers can be
obtained with the req function. Using these variables may cause the header name to be added to the Vary header
of the HTTP response, except where otherwise noted for the directive accepting the expression. The reg_novary
function may be used to circumvent this behavior.

Name

HTTP_ACCEPT
HITP_COOKIE
HTTP_FORWARDED
HTTP_HOST
HTTP_PROXY_CONNECTION
HITP_REFERER
HTTP_USER_AGENT

Other request related variables

Name Description

REQUEST_METHOD The HTTP method of the incoming request (e.g. GET)

REQUEST_SCHEME The scheme part of the request’s URI

REQUEST_URI The path part of the request’s URI

DOCUMENT_URI Same as REQUEST_URI

REQUEST_FILENAME The full local filesystem path to the file or script matching the request, if this

has already been determined by the server at the time REQUEST_FILENAME
is referenced. Otherwise, such as when used in virtual host context, the same
value as REQUEST_URI

SCRIPT_FILENAME Same as REQUEST_FILENAME

LAST MODIFIED The date and time of last modification of the file in the format
20101231235959, if this has already been determined by the server at the
time LAST MODIFIED is referenced

SCRIPT_USER

The user name of the owner of the script.

SCRIPT_GROUP

The group name of the group of the script.

PATH_INFO

The trailing path name information, see ACCEPTPATHINFO

102

CHAPTER 2. USING THE APACHE HTTP SERVER

QUERY_STRING

The query string of the current request

IS_SUBREQ "true" if the current request is a subrequest, "false" otherwise
THE_REQUEST The complete request line (e.g., "GET /index.html HTTP/1.1")
REMOTE_ADDR The IP address of the remote host

REMOTE_HOST

The host name of the remote host

REMOTE_USER

The name of the authenticated user, if any (not available during <IF>)

REMOTE_IDENT

The user name set by MOD_IDENT

SERVER_NAME

The SERVERNAME of the current vhost

SERVER_PORT

The server port of the current vhost, see SERVERNAME

SERVER_ADMIN

The SERVERADMIN of the current vhost

SERVER_PROTOCOL

The protocol used by the request (e.g. HTTP/1.1). In some types of internal
subrequests, this variable has the value INCLUDED.

SERVER_PROTOCOL_VERSION

A number that encodes the HTTP version of the request: 1000 * major +
minor. For example, 1001 corresponds to HTTP/1.1 and 9 corresponds to
HTTP/0.9

SERVER_PROTOCOL_VERSION_MAJOR

The major version part of the HTTP version of the request, e.g. 1 for HTTP/1.0

SERVER_PROTOCOL_VERSION_MINOR

The minor version part of the HTTP version of the request, e.g. 0 for HTTP/1.0

DOCUMENT_ROOT

The DOCUMENTROOT of the current vhost

AUTH._TYPE The configured AUTHTYPE (e.g. "basic")
CONTENT._TYPE The content type of the response (not available during <IF>)
HANDLER The name of the handler (p. 108) creating the response
HTTP2 "on" if the request uses http/2, "o £ £" otherwise

HTTPS "on™" if the request uses https, "of£" otherwise

IPV6 "on" if the connection uses IPv6, "o f £" otherwise

REQUEST_STATUS

The HTTP error status of the request (not available during <IF>)

REQUEST_LOG-ID

The error log id of the request (see ERRORLOGFORMAT)

CONN_LOG_ID

The error log id of the connection (see ERRORLOGFORMAT)

CONN_REMOTE_ADDR

The peer IP address of the connection (see the MOD_REMOTEIP module)

CONTEXT_PREFIX

CONTEXT_DOCUMENT_ROOT

Misc variables

Name Description

TIME_YEAR The current year (e.g. 2010)

TIME_MON The current month (1, ..., 12)

TIME_DAY The current day of the month

TIME_HOUR The hour part of the current time (0, ..., 23)
TIME_MIN The minute part of the current time

TIME_SEC The second part of the current time

TIME_WDAY The day of the week (starting with O for Sunday)
TIME The date and time in the format 20101231235959

SERVER_SOFTWARE

The server version string

API_VERSION

The date of the API version (module magic number)

Some modules register additional variables, see e.g. MOD_SSL.

Binary operators

With the exception of some

"—[a-zA-Z] [a-zA-Z0-9_1+", i.e.

comparison operators, binary operators have the form
a minus and at least two characters. = The name is not case

sensitive. Modules may register additional binary operators.

2.17. EXPRESSIONS IN APACHE HTTP SERVER

Comparison operators

103

Name Alternative Description
== = String equality
1= String inequality
< String less than
<= String less than or equal
> String greater than
>= String greater than or equal
=" String matches the regular expression
- String does not match the regular expression
-eq eq Integer equality
-ne ne Integer inequality
-1t 1t Integer less than
-le le Integer less than or equal
-gt gt Integer greater than
-ge ge Integer greater than or equal
Other binary operators
Name Description
—ipmatch IP address matches address/netmask
-strmatch left string matches pattern given by right string (containing wildcards *, 2, [])
—-strcmatch same as —strmatch, but case insensitive
—fnmatch same as —strmatch, but slashes are not matched by wildcards

Unary operators

Unary operators take one argument and have the form "-[a-zA-Z] ", i.e. a minus and one character. The name is
case sensitive. Modules may register additional unary operators.

CHAPTER 2. USING THE APACHE HTTP SERVER

Description

Restricted

The argument is treated as
a filename. True if the file
exists and is a directory

yes

The argument is treated as
a filename. True if the file
(or dir or special) exists

yes

The argument is treated as
a filename. True if the file
exists and is regular file

yes

The argument is treated as
a filename. True if the file
exists and is not empty

yes

The argument is treated as
a filename. True if the file
exists and is symlink

yes

The argument is treated as
a filename. True if the
file exists and is symlink
(same as —L)

yes

True if string is a valid
file, accessible via all
the server’s currently-
configured access controls
for that path. This uses an
internal subrequest to do
the check, so use it with
care - it can impact your
server’s performance!

True if string is a valid
URL, accessible via all
the server’s currently-
configured access controls
for that path. This uses an
internal subrequest to do
the check, so use it with
care - it can impact your
server’s performance!

Alias for —-U

True if string is not empty

True if string is empty

False if string is empty,
"O", "Off"’ "false"’
or "no" (case insensi-
tive). True otherwise.

Same as
"%{REMOTE_ADDR}
—ipmatch ...", but
more efficient

The operators marked as "restricted" are not available in some modules like MOD_INCLUDE.

Functions

Normal string-valued functions take one string as argument and return a string. Functions names are not case sensitive.
Modules may register additional functions.

2.17. EXPRESSIONS IN APACHE HTTP SERVER

105

curences of "from" in the string with "to".

Name Description Restricted

req, http Get HTTP request header; header names may be
added to the Vary header, see below

reg.novary Same as req, but header names will not be added to
the Vary header

resp Get HTTP response header (most response headers
will not yet be set during <IF>)

regenv Lookup request environment variable (as a shortcut,
v can be used too to access variables)

osenv Lookup operating system environment variable

note Lookup request note

env Return first match of note, regenv, osenv

tolower Convert string to lower case

toupper Convert string to upper case

escape Escape special characters in %hex encoding

unescape Unescape %hex encoded string, leaving encoded
slashes alone; return empty string if %00 is found

base64 Encode the string using base64 encoding

unbase64 Decode base64 encoded string, return truncated
string if 0x00 is found

md5 Hash the string using MD5, then encode the hash
with hexadecimal encoding

shal Hash the string using SHA1, then encode the hash
with hexadecimal encoding

file Read contents from a file (including line endings, | yes
when present)

filemod Return last modification time of a file (or O if file | yes
does not exist or is not regular file)

filesize Return size of a file (or O if file does not exist or is | yes
not regular file)

ldap Escape characters as required by LDAP distin-
guished name escaping (RFC4514) and LDAP filter
escaping (RFC4515).

replace replace(string, "from", "to") replaces all oc-

The functions marked as "restricted" are not available in some modules like MOD_INCLUDE.

When the functions req or http are used, the header name will automatically be added to the Vary header of the
HTTP response, except where otherwise noted for the directive accepting the expression. The req_novary function
can be used to prevent names from being added to the Vary header.

In addition to string-valued functions, there are also list-valued functions which take one string as argument and return
a wordlist, i.e. a list of strings. The wordlist can be used with the special —in operator. Functions names are not case
sensitive. Modules may register additional functions.

There are no built-in list-valued functions. MOD_SSL provides PeerExtList. See the description of SSLREQUIRE
for details (but PeerExtList is also usable outside of SSLREQUIRE).

Example expressions

The following examples show how expressions might be used to evaluate requests:

Compare the host name to example.com and redirect to www.example.com if it matches

<If "${HTTP_HOST} == 'example.com’">

106 CHAPTER 2. USING THE APACHE HTTP SERVER

Redirect permanent "/" "http://www.example.com/"
</If>

Force text/plain if requesting a file with the query string contains ’forcetext’
<If "${QUERY_STRING} ="~ /forcetext/">

ForceType text/plain
</If>

Only allow access to this content during business hours
<Directory "/foo/bar/business">

Require expr %${TIME_HOUR} -gt 9 && $%{TIME_HOUR} -1t 17
</Directory>

Check a HTTP header for a list of values

<If "${HTTP:X-example-header} in { ’'foo’, ’'bar’, ’'baz’ }">
Header set matched true

</If>

Check an environment variable for a regular expression, negated.
<If "! regenv ('REDIRECT_FOO’) =~ /bar/">

Header set matched true
</If>

Check result of URI mapping by running in Directory context with -f
<Directory "/var/www">
AddEncoding x-gzip gz
<If "-f "${REQUEST_FILENAME}.unzipme’ && ! ${HTTP:Accept-Encoding} =~ /gzip/">
SetOutputFilter INFLATE
</If>
</Directory>

Check against the client IP
<If "-R ’192.168.1.0/24"">

Header set matched true
</If>

Function examples in boolean context

<If "md5(’foo’) == "acbdl8db4cc2f85cedef654fccc4add8’ ">
Header set checksum-matched true

</If>

<If "md5(’foo’) == replace ('md5:XXXd1l8db4cc2f85cedef654fccc4add8’, 'md5:XXX’", "acb’)">
Header set checksum-matched-2 true

</If>

Function example in string context
Header set foo-checksum "expr=%{md5:foo}"

This delays the evaluation of the condition clause compared to <If>
Header always set CustomHeader my-value "expr=%{REQUEST_URI} =" m#"/special_path.phps$#"

2.17. EXPRESSIONS IN APACHE HTTP SERVER 107

Other
Name Alternative Description
—-in in string contained in wordlist
/regexp/ m#regexp# Regular expression (the second form allows different delimiters than /)
/regexp/1i m#regexp#i Case insensitive regular expression
$0 ... $9 Regular expression backreferences

Regular expression backreferences
The strings $0 ... $9 allow to reference the capture groups from a previously executed, successfully matching regular

expressions. They can normally only be used in the same expression as the matching regex, but some modules allow
special uses.

Comparison with SSLLRequire

The ap_expr syntax is mostly a superset of the syntax of the deprecated SSLREQUIRE directive. The differences are
described in SSLREQUIRE’s documentation.

Version History

The reg_novary function is available for versions 2.4.4 and later.

The SERVER_PROTOCOL_VERSTION, SERVER_PROTOCOL_VERSION_MAJOR and
SERVER_PROTOCOL_VERSION_MINOR variables are available for versions 2.5.0 and later.

108 CHAPTER 2. USING THE APACHE HTTP SERVER

2.18 Apache’s Handler Use

This document describes the use of Apache’s Handlers.

What is a Handler
Related Modules Related Directives
MOD_ACTIONS ACTION
MOD_ASIS ADDHANDLER
MOD_CGI REMOVEHANDLER
MOD_IMAGEMAP SETHANDLER
MOD_INFO
MOD_MIME
MOD _NEGOTIATION
MOD _STATUS

A "handler" is an internal Apache representation of the action to be performed when a file is called. Generally, files
have implicit handlers, based on the file type. Normally, all files are simply served by the server, but certain file types
are "handled" separately.

Handlers may also be configured explicitly, based on either filename extensions or on location, without relation to file
type. This is advantageous both because it is a more elegant solution, and because it also allows for both a type and a
handler to be associated with a file. (See also Files with Multiple Extensions (p. 749) .)

Handlers can either be built into the server or included in a module, or they can be added with the ACTION directive.
The built-in handlers in the standard distribution are as follows:

o default-handler: Send the file using the default_handler (), which is the handler used by default to handle
static content. (core)

e send-as-is: Send file with HTTP headers as is. (MOD_ASIS)

e cgi-script: Treat the file as a CGI script. (MOD_CGI)

e imap-file: Parse as an imagemap rule file. (MOD_IMAGEMAP)

e server-info: Get the server’s configuration information. (MOD_INFO)
e server-status: Get the server’s status report. (MOD_STATUS)

e type-map: Parse as a type map file for content negotiation. (MOD_NEGOTIATION)

Examples
Modifying static content using a CGI script

The following directives will cause requests for files with the htm1 extension to trigger the launch of the footer.pl
CGI script.

Action add-footer /cgi-bin/footer.pl
AddHandler add-footer .html

Then the CGI script is responsible for sending the originally requested document (pointed to by the
PATH_TRANSLATED environment variable) and making whatever modifications or additions are desired.

2.18. APACHE’S HANDLER USE 109

Files with HTTP headers

The following directives will enable the send—as—1s handler, which is used for files which contain their own HTTP
headers. All files in the /web/htdocs/asis/ directory will be processed by the send—-as—1s handler, regardless
of their filename extensions.

<Directory "/web/htdocs/asis">
SetHandler send-as-is
</Directory>

Programmer’s Note

In order to implement the handler features, an addition has been made to the Apache API (p. 1019) that you may wish
to make use of. Specifically, a new record has been added to the request_rec structure:

char *handler

If you wish to have your module engage a handler, you need only to set r—>handler to the name of the handler at
any time prior to the invoke_handler stage of the request. Handlers are implemented as they were before, albeit
using the handler name instead of a content type. While it is not necessary, the naming convention for handlers is to
use a dash-separated word, with no slashes, so as to not invade the media type name-space.

110 CHAPTER 2. USING THE APACHE HTTP SERVER

2.19 Filters

This document describes the use of filters in Apache.

Filtering in Apache 2

Related Modules Related Directives
MOD_FILTER FILTERCHAIN
MOD_DEFLATE FILTERDECLARE
MOD_EXT_FILTER FILTERPROTOCOL
MOD_INCLUDE FILTERPROVIDER
MOD_CHARSET_LITE ADDINPUTFILTER
MOD _REFLECTOR ADDOUTPUTFILTER
MOD_BUFFER REMOVEINPUTFILTER
MOD_DATA REMOVEOUTPUTFILTER
MOD_RATELIMIT REFLECTORHEADER
MOD_REQTIMEOUT EXTFILTERDEFINE
MOD_REQUEST EXTFILTEROPTIONS
MOD_SED SETINPUTFILTER
MOD_SUBSTITUTE SETOUTPUTFILTER
MOD_XML2ENC

MOD _PROXY_HTML

MOD_POLICY

The Filter Chain is available in Apache 2.0 and higher, and enables applications to process incoming and outgoing data
in a highly flexible and configurable manner, regardless of where the data comes from. We can pre-process incoming
data, and post-process outgoing data, at will. This is basically independent of the traditional request processing phases.

2.19. FILTERS 111

Data axis
| |

socept_p T TN T Contert | A7 o™ o Process

Request _‘_/ Generator | SIS T 4l

Freliminary Processing (E\

Request Processing in Apache

Chutput
Filters

Input
Filters

Some examples of filtering in the standard Apache distribution are:

e MOD_INCLUDE, implements server-side includes.

e MOD_SSL, implements SSL encryption (https).

e MOD_DEFLATE, implements compression/decompression on the fly.
e MOD_CHARSET_LITE, transcodes between different character sets.

e MOD_EXT_FILTER, runs an external program as a filter.

Apache also uses a number of filters internally to perform functions like chunking and byte-range handling.

A wider range of applications are implemented by third-party filter modules available from modules.apache.org®’ and
elsewhere. A few of these are:

e HTML and XML processing and rewriting
e XSLT transforms and XIncludes
e XML Namespace support

37http://modules.apache.org/

http://modules.apache.org/

112 CHAPTER 2. USING THE APACHE HTTP SERVER

e File Upload handling and decoding of HTML Forms
e Image processing
e Protection of vulnerable applications such as PHP scripts

o Text search-and-replace editing

Smart Filtering

To Client
i

PFDUldEF-HHH%Hﬂhﬂ

PFDUidEF*’ﬁHﬁ;;ﬁH

Filter

. Frovider
Harness

3 --F------

Filter Frowvider
Harhess

MOD _FILTER, included in Apache 2.1 and later, enables the filter chain to be configured dynamically at run time.
So for example you can set up a proxy to rewrite HTML with an HTML filter and JPEG images with a completely
separate filter, despite the proxy having no prior information about what the origin server will send. This works by
using a filter harness, that dispatches to different providers according to the actual contents at runtime. Any filter may
be either inserted directly in the chain and run unconditionally, or used as a provider and inserted dynamically. For
example,

e an HTML processing filter will only run if the content is text/html or application/xhtml+xml
e A compression filter will only run if the input is a compressible type and not already compressed

e A charset conversion filter will be inserted if a text document is not already in the desired charset

Exposing Filters as an HTTP Service

Filters can be used to process content originating from the client in addition to processing content originating on the
server using the MOD_REFLECTOR module.

2.19. FILTERS 113

MOD_REFLECTOR accepts POST requests from clients, and reflects the content request body received within the POST
request back in the response, passing through the output filter stack on the way back to the client.

This technique can be used as an alternative to a web service running within an application server stack, where an
output filter provides the transformation required on the request body. For example, the MOD_DEFLATE module might
be used to provide a general compression service, or an image transformation filter might be turned into an image
transformation service.

Using Filters

There are two ways to use filtering: Simple and Dynamic. In general, you should use one or the other; mixing them
can have unexpected consequences (although simple Input filtering can be mixed freely with either simple or dynamic
Output filtering).

The Simple Way is the only way to configure input filters, and is sufficient for output filters where you need a static filter
chain. Relevant directives are SETINPUTFILTER, SETOUTPUTFILTER, ADDINPUTFILTER, ADDOUTPUTFILTER,
REMOVEINPUTFILTER, and REMOVEOUTPUTFILTER.

The Dynamic Way enables both static and flexible, dynamic configuration of output filters, as discussed in the
MOD_FILTER page. Relevant directives are FILTERCHAIN, FILTERDECLARE, and FILTERPROVIDER.

One further directive ADDOUTPUTFILTERBYTYPE is still supported, but deprecated. Use dynamic configuration
instead.

114 CHAPTER 2. USING THE APACHE HTTP SERVER

2.20 Shared Object Cache in Apache HTTP Server

The Shared Object Cache provides a means to share simple data across all a server’s workers, regardless of thread and
process models (p. 90) . It is used where the advantages of sharing data across processes outweigh the performance
overhead of inter-process communication.

Shared Object Cache Providers

The shared object cache as such is an abstraction. Four different modules implement it. To use the cache, one or more
of these modules must be present, and configured.

The only configuration required is to select which cache provider to use. This is the responsibility of modules using
the cache, and they enable selection using directives such as CACHESOCACHE, AUTHNCACHESOCACHE, SSLSES-
SIONCACHE, and SSLSTAPLINGCACHE.

Currently available providers are:

"dbm" (MOD_SOCACHE_DBM) This makes use of a DBM hash file. The choice of underlying DBM used may be
configurable if the installed APR version supports multiple DBM implementations.

"de" (MOD_SOCACHE_DC) This makes use of the distcache® distributed session caching libraries.

"memcache" (MOD_SOCACHE_MEMCACHE) This makes use of the memcached® high-performance, distributed
memory object caching system.

"shmcb" (MOD_SOCACHE_SHMCB) This makes use of a high-performance cyclic buffer inside a shared memory
segment.

The API provides the following functions:

const char *create(ap_socache_instance_t **instance, const char *arg, apr_pool_t *tmp, apr_pool_t *p); Create
a session cache based on the given configuration string. The instance pointer returned in the instance paramater
will be passed as the first argument to subsequent invocations.

apr_status_t init(ap_socache_instance_t *instance, const char *cname, const struct ap_socache_hints *hints, server_rec *s, apr_po
Initialize the cache. The cname must be of maximum length 16 characters, and uniquely identifies the consumer
of the cache within the server; using the module name is recommended, e.g. "mod_ssl-sess". This string may
be used within a filesystem path so use of only alphanumeric [a-z0-9_-] characters is recommended. If hints is
non-NULL, it gives a set of hints for the provider. Return APR error code.

void destroy(ap_socache_instance_t *instance, server_rec *s) Destroy a given cache instance object.

apr_status_t store(ap_socache_instance_t *instance, server_rec *s, const unsigned char *id, unsigned int idlen, apr_time_t expiry,
Store an object in a cache instance.

apr_status_t retrieve(ap_socache_instance_t *instance, server_rec *s, const unsigned char *id, unsigned int idlen, unsigned char *
Retrieve a cached object.

apr_status_t remove(ap_socache_instance_t *instance, server_rec *s, const unsigned char *id, unsigned int idlen, apr_pool_t *poo
Remove an object from the cache.

void status(ap_socache_instance_t *instance, request_rec *r, int flags) Dump the status of a cache instance for
mod_status.

apr_status_t iterate(ap_socache_instance_t *instance, server_rec *s, void *userctx, ap_socache_iterator_t *iterator, apr_pool_t *po
Dump all cached objects through an iterator callback.

Bhttp://distcache.sourceforge.net/
http://memcached.org/

http://distcache.sourceforge.net/
http://memcached.org/

2.21. SUEXEC SUPPORT 115
2.21 suEXEC Support

The suEXEC feature provides users of the Apache HTTP Server the ability to run CGI and SSI programs under user
IDs different from the user ID of the calling web server. Normally, when a CGI or SSI program executes, it runs as the
same user who is running the web server.

Used properly, this feature can reduce considerably the security risks involved with allowing users to develop and run
private CGI or SSI programs. However, if suUEXEC is improperly configured, it can cause any number of problems
and possibly create new holes in your computer’s security. If you aren’t familiar with managing setuid root programs
and the security issues they present, we highly recommend that you not consider using suEXEC.

Before we begin

Before jumping head-first into this document, you should be aware that certain assumptions are made about you and
the environment in which you will be using suexec.

First, it is assumed that you are using a UNIX derivative operating system that is capable of setuid and setgid oper-
ations. All command examples are given in this regard. Other platforms, if they are capable of supporting SUEXEC,
may differ in their configuration.

Second, it is assumed you are familiar with some basic concepts of your computer’s security and its administration.
This involves an understanding of setuid/setgid operations and the various effects they may have on your system and
its level of security.

Third, it is assumed that you are using an unmodified version of sUuEXEC code. All code for suEXEC has been
carefully scrutinized and tested by the developers as well as numerous beta testers. Every precaution has been taken
to ensure a simple yet solidly safe base of code. Altering this code can cause unexpected problems and new security
risks. It is highly recommended you not alter the SUEXEC code unless you are well versed in the particulars of security
programming and are willing to share your work with the Apache HTTP Server development team for consideration.

Fourth, and last, it has been the decision of the Apache HTTP Server development team to NOT make suEXEC part
of the default installation of Apache httpd. To this end, suEXEC configuration requires of the administrator careful
attention to details. After due consideration has been given to the various settings for sSuEXEC, the administrator may
install SUEXEC through normal installation methods. The values for these settings need to be carefully determined
and specified by the administrator to properly maintain system security during the use of sUEXEC functionality. It is
through this detailed process that we hope to limit sSuEXEC installation only to those who are careful and determined
enough to use it.

Still with us? Yes? Good. Let’s move on!

suEXEC Security Model

Before we begin configuring and installing suEXEC, we will first discuss the security model you are about to imple-
ment. By doing so, you may better understand what exactly is going on inside sSUEXEC and what precautions are taken
to ensure your system’s security.

suEXEC is based on a setuid "wrapper" program that is called by the main Apache HTTP Server. This wrapper is
called when an HTTP request is made for a CGI or SSI program that the administrator has designated to run as a userid
other than that of the main server. When such a request is made, Apache httpd provides the sSuEXEC wrapper with the
program’s name and the user and group IDs under which the program is to execute.

The wrapper then employs the following process to determine success or failure — if any one of these conditions fail,
the program logs the failure and exits with an error, otherwise it will continue:

1. Is the user executing this wrapper a valid user of this system?

This is to ensure that the user executing the wrapper is truly a user of the system.

116

10.

11.

12.

13.

14.

15.

CHAPTER 2. USING THE APACHE HTTP SERVER

Was the wrapper called with the proper number of arguments?

The wrapper will only execute if it is given the proper number of arguments. The proper argument format is
known to the Apache HTTP Server. If the wrapper is not receiving the proper number of arguments, it is either
being hacked, or there is something wrong with the suEXEC portion of your Apache httpd binary.

Is this valid user allowed to run the wrapper?

Is this user the user allowed to run this wrapper? Only one user (the Apache user) is allowed to execute this
program.

Does the target CGI or SSI program have an unsafe hierarchical reference?

Does the target CGI or SSI program’s path contain a leading °/ or have a ’.” backreference?
These are not allowed; the target CGI/SSI program must reside within SUEXEC’s document root (see
——with-suexec—docroot=DIR below).

Is the target user name valid?

Does the target user exist?

Is the target group name valid?

Does the target group exist?

Is the target user NOT superuser?

suEXEC does not allow root to execute CGI/SSI programs.

. Is the target userid ABOVE the minimum ID number?

The minimum user ID number is specified during configuration. This allows you to set the lowest possible
userid that will be allowed to execute CGI/SSI programs. This is useful to block out "system" accounts.

Is the target group NOT the superuser group?

Presently, suEXEC does not allow the root group to execute CGI/SSI programs.

Is the target groupid ABOVE the minimum ID number?

The minimum group ID number is specified during configuration. This allows you to set the lowest possible
groupid that will be allowed to execute CGI/SSI programs. This is useful to block out "system" groups.

Can the wrapper successfully become the target user and group?

Here is where the program becomes the target user and group via setuid and setgid calls. The group access list
is also initialized with all of the groups of which the user is a member.

Can we change directory to the one in which the target CGI/SSI program resides?

If it doesn’t exist, it can’t very well contain files. If we can’t change directory to it, it might as well not exist.

Is the directory within the httpd webspace?

If the request is for a regular portion of the server, is the requested directory within SuEXEC’s document root?
If the request is for a USERDIR, is the requested directory within the directory configured as SuEXEC’s userdir
(see SuUEXEC’s configuration options)?

Is the directory NOT writable by anyone else?

We don’t want to open up the directory to others; only the owner user may be able to alter this directories
contents.

Does the target CGI/SSI program exist?

If it doesn’t exists, it can’t very well be executed.

2.21. SUEXEC SUPPORT 117

16. Is the target CGI/SSI program NOT writable by anyone else?
We don’t want to give anyone other than the owner the ability to change the CGI/SSI program.

17. Is the target CGI/SSI program NOT setuid or setgid?

We do not want to execute programs that will then change our UID/GID again.

18. Is the target user/group the same as the program’s user/group?

Is the user the owner of the file?

19. Can we successfully clean the process environment to ensure safe operations?

suEXEC cleans the process’ environment by establishing a safe execution PATH (defined during configuration),
as well as only passing through those variables whose names are listed in the safe environment list (also created
during configuration).

20. Can we successfully become the target CGI/SSI program and execute?
Here is where suEXEC ends and the target CGI/SSI program begins.

This is the standard operation of the sSuEXEC wrapper’s security model. It is somewhat stringent and can impose new
limitations and guidelines for CGI/SSI design, but it was developed carefully step-by-step with security in mind.

For more information as to how this security model can limit your possibilities in regards to server configuration, as
well as what security risks can be avoided with a proper SuEXEC setup, see the "Beware the Jabberwock" section of
this document.

Configuring & Installing sSuEXEC

Here’s where we begin the fun.

suEXEC configuration options

——enable-suexec This option enables the SUEXEC feature which is never installed or activated by default. At
least one ——with-suexec—xxxxx option has to be provided together with the ——enable-suexec option
to let APACI accept your request for using the SUEXEC feature.

——enable-suexec-capabilities Linux specific: Normally, the suexec binary is installed "setuid/setgid
root", which allows it to run with the full privileges of the root user. If this option is used, the suexec binary
will instead be installed with only the setuid/setgid "capability" bits set, which is the subset of full root priviliges
required for suexec operation. Note that the suexec binary may not be able to write to a log file in this mode;
it is recommended that the ——with—-suexec-syslog —-without-suexec—logfile options are used
in conjunction with this mode, so that syslog logging is used instead.

——with-suexec-bin=PATH The path to the suexec binary must be hard-coded in the server for security rea-
sons. Use this option to override the default path. e.g. ——with-suexec-bin=/usr/sbin/suexec

—-with-suexec—caller=UID The username (p. 990) under which httpd normally runs. This is the only user
allowed to execute the sSuEXEC wrapper.

——with-suexec—userdir=DIR Define to be the subdirectory under users’ home directories where suEXEC
access should be allowed. All executables under this directory will be executable by suEXEC as the user so they
should be "safe" programs. If you are using a "simple" USERDIR directive (ie. one without a "*" in it) this
should be set to the same value. SuEXEC will not work properly in cases where the USERDIR directive points
to a location that is not the same as the user’s home directory as referenced in the passwd file. Default value is
"public_html".

If you have virtual hosts with a different USERDIR for each, you will need to define them to all reside in one
parent directory; then name that parent directory here. If this is not defined properly, ""userdir" cgi requests
will not work!

118 CHAPTER 2. USING THE APACHE HTTP SERVER

——with-suexec—docroot=DIR Define as the DocumentRoot set for httpd. This will be the only hierarchy
(aside from USERDIRs) that can be used for SuEXEC behavior. The default directory is the ——datadir
value with the suffix " /htdocs™", e.g. if you configure with "--datadir=/home/apache" the directory
" /home/apache/htdocs" is used as document root for the SUEXEC wrapper.

——with-suexec—uidmin=UID Define this as the lowest UID allowed to be a target user for sSUEXEC. For most
systems, 500 or 100 is common. Default value is 100.

——with-suexec—gidmin=GID Define this as the lowest GID allowed to be a target group for suEXEC. For most
systems, 100 is common and therefore used as default value.

—-with-suexec-logfile=FILE This defines the filename to which all SUEXEC transactions and errors are
logged (useful for auditing and debugging purposes). By default the logfile is named "suexec_log" and
located in your standard logfile directory (——logfiledir).

—-with-suexec-syslog If defined, suexec will log notices and errors to syslog instead of a logfile. This option
must be combined with ——without-suexec-logfile.

—-with-suexec-safepath=PATH Define a safe PATH environment to pass to CGI executables. Default value
is"/usr/local/bin:/usr/bin:/bin".

Compiling and installing the suEXEC wrapper

If you have enabled the SUEXEC feature with the ——enable-suexec option the suexec binary (together with
httpd itself) is automatically built if you execute the make command.

After all components have been built you can execute the command make install to install them. The bi-
nary image suexec is installed in the directory defined by the ——sbindir option. The default location is
" fusr/local/apache2/bin/suexec" .

Please note that you need root privileges for the installation step. In order for the wrapper to set the user ID, it must
be installed as owner root and must have the setuserid execution bit set for file modes.

Setting paranoid permissions

Although the suEXEC wrapper will check to ensure that its caller is the correct user as specified with the
——with-suexec—caller configure option, there is always the possibility that a system or library call SUEXEC
uses before this check may be exploitable on your system. To counter this, and because it is best-practise in general,
you should use filesystem permissions to ensure that only the group httpd runs as may execute SuEXEC.

If for example, your web server is configured to run as:

User www
Group webgroup

and suexedc is installed at "/usr/local/apache2/bin/suexec", you should run:

chgrp webgroup /usr/local/apache2/bin/suexec

chmod 4750 /usr/local/apache2/bin/suexec

This will ensure that only the group httpd runs as can even execute the sSuEXEC wrapper.

2.21. SUEXEC SUPPORT 119

Enabling & Disabling suEXEC

Upon startup of httpd, it looks for the file suexec in the directory defined by the ——sbindir option (default is
" /ust/local/apache/sbin/suexec"). If httpd finds a properly configured suEXEC wrapper, it will print the following
message to the error log:

[notice] suEXEC mechanism enabled (wrapper: /path/to/suexec)

If you don’t see this message at server startup, the server is most likely not finding the wrapper program where it
expects it, or the executable is not installed setuid root.

If you want to enable the suUEXEC mechanism for the first time and an Apache HTTP Server is already running you
must kill and restart httpd. Restarting it with a simple HUP or USR1 signal will not be enough.

If you want to disable suEXEC you should kill and restart httpd after you have removed the suexec file.

Using suEXEC

Requests for CGI programs will call the suEXEC wrapper only if they are for a virtual host containing a SUEXE-
CUSERGROUP directive or if they are processed by MOD_USERDIR.

Virtual Hosts:

One way to use the sSUEXEC wrapper is through the SUEXECUSERGROUP directive in VIRTUALHOST definitions. By
setting this directive to values different from the main server user ID, all requests for CGI resources will be executed
as the User and Group defined for that <VIRTUALHOST>. If this directive is not specified for a <VIRTUALHOST>
then the main server userid is assumed.

User directories:

Requests that are processed by MOD_USERDIR will call the SuEXEC wrapper to execute CGI programs under the
userid of the requested user directory. The only requirement needed for this feature to work is for CGI execution
to be enabled for the user and that the script must meet the scrutiny of the security checks above. See also the
-—with-suexec—userdir compile time option.

Debugging suEXEC

The suEXEC wrapper will write log information to the file defined with the ——with-suexec-1logfile option as
indicated above, or to syslog if ——with-suexec-syslog is used. If you feel you have configured and installed
the wrapper properly, have a look at the log and the error_log for the server to see where you may have gone astray.
The output of "suexec -V" will show the options used to compile suexec, if using a binary distribution.

Beware the Jabberwock: Warnings & Examples

NOTE! This section may not be complete. For the latest revision of this section of the documentation, see the Online
Documentation*®” version.

There are a few points of interest regarding the wrapper that can cause limitations on server setup. Please review these
before submitting any "bugs" regarding SUEXEC.

o suEXEC Points Of Interest

4Ohttp://httpd.apache.org/docs/trunk/suexec.html

http://httpd.apache.org/docs/trunk/suexec.html

120 CHAPTER 2. USING THE APACHE HTTP SERVER

e Hierarchy limitations
For security and efficiency reasons, all SUEXEC requests must remain within either a top-level document root
for virtual host requests, or one top-level personal document root for userdir requests. For example, if you have
four VirtualHosts configured, you would need to structure all of your VHosts’ document roots off of one main
httpd document hierarchy to take advantage of sSuEXEC for VirtualHosts. (Example forthcoming.)

e suEXEC’s PATH environment variable

This can be a dangerous thing to change. Make certain every path you include in this define is a trusted
directory. You don’t want to open people up to having someone from across the world running a trojan horse on
them.

o Altering the suEXEC code

Again, this can cause Big Trouble if you try this without knowing what you are doing. Stay away from it if at
all possible.

2.22. ISSUES REGARDING DNS AND APACHE HTTP SERVER 121

2.22 Issues Regarding DNS and Apache HTTP Server

This page could be summarized with the statement: don’t configure Apache HTTP Server in such a way that it relies
on DNS resolution for parsing of the configuration files. If httpd requires DNS resolution to parse the configuration
files then your server may be subject to reliability problems (ie. it might not start up), or denial and theft of service
attacks (including virtual hosts able to steal hits from other virtual hosts).

A Simple Example

This is a misconfiguration example, do not use on your server
<VirtualHost www.example.dom>

ServerAdmin webgirl@example.dom

DocumentRoot "/www/example"
</VirtualHost>

In order for the server to function properly, it absolutely needs to have two pieces of information about each virtual
host: the SERVERNAME and at least one IP address that the server will bind and respond to. The above example does
not include the IP address, so httpd must use DNS to find the address of www.example.dom. If for some reason
DNS is not available at the time your server is parsing its config file, then this virtual host will not be configured. It
won’t be able to respond to any hits to this virtual host.

Suppose that www . example . dom has address 192.0.2.1. Then consider this configuration snippet:

This is a misconfiguration example, do not use on your server
<VirtualHost 192.0.2.1>

ServerAdmin webgirl@example.dom

DocumentRoot "/www/example"
</VirtualHost>

This time httpd needs to use reverse DNS to find the ServerName for this virtualhost. If that reverse lookup fails
then it will partially disable the virtualhost. If the virtual host is name-based then it will effectively be totally disabled,
but if it is [P-based then it will mostly work. However, if httpd should ever have to generate a full URL for the server
which includes the server name (such as when a Redirect is issued), then it will fail to generate a valid URL.

Here is a snippet that avoids both of these problems:

<VirtualHost 192.0.2.1>
ServerName www.example.dom
ServerAdmin webgirl@example.dom
DocumentRoot "/www/example"
</VirtualHost>

Denial of Service

Consider this configuration snippet:

<VirtualHost www.examplel.dom>
ServerAdmin webgirl@examplel.dom
DocumentRoot "/www/examplel"

</VirtualHost>

<VirtualHost www.example2.dom>
ServerAdmin webguylexampleZ2.dom

122 CHAPTER 2. USING THE APACHE HTTP SERVER

DocumentRoot "/www/example2"
</VirtualHost>

Suppose that you’ve assigned 192.0.2.1 to www . examplel.dom and 192.0.2.2 to www . example?2 .dom. Further-
more, suppose that examplel . dom has control of their own DNS. With this config you have put examplel.dom
into a position where they can steal all traffic destined to example2.dom. To do so, all they have to do is set
www.examplel.dom to 192.0.2.2. Since they control their own DNS you can’t stop them from pointing the
www .examplel . dom record wherever they wish.

Requests coming in to 192.0.2.2 (including all those where users typed in URLs of the form
http://www.example2.dom/whatever) will all be served by the examplel.dom virtual host.
To better understand why this happens requires a more in-depth discussion of how httpd matches up incoming
requests with the virtual host that will serve it. A rough document describing this is available (p. 141) .

The "main server" Address

Name-based virtual host support (p. 125) requires httpd to know the IP address(es) of the host that ht t pd is running
on. To get this address it uses either the global SERVERNAME (if present) or calls the C function gethostname
(which should return the same as typing "hostname" at the command prompt). Then it performs a DNS lookup on
this address. At present there is no way to avoid this lookup.

If you fear that this lookup might fail because your DNS server is down then you can insert the hostname in
/etc/hosts (where you probably already have it so that the machine can boot properly). Then ensure that your
machine is configured to use /etc/hosts in the event that DNS fails. Depending on what OS you are using this
might be accomplished by editing /etc/resolv.conf, or maybe /etc/nsswitch.conf.

If your server doesn’t have to perform DNS for any other reason then you might be able to get away with running httpd
with the HOSTRESORDER environment variable set to "local". This all depends on what OS and resolver libraries
you are using. It also affects CGIs unless you use MOD_ENV to control the environment. It’s best to consult the man
pages or FAQs for your OS.

Tips to Avoid These Problems

e use [P addresses in VIRTUALHOST
e use IP addresses in LISTEN
e ensure all virtual hosts have an explicit SERVERNAME

e create a <VirtualHost _default_: x> server that has no pages to serve

Chapter 3

Apache Virtual Host documentation

123

124 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION
3.1 Apache Virtual Host documentation

The term Virtual Host refers to the practice of running more than one web site (such as companyl.example.com
and company?2 .example.com) on a single machine. Virtual hosts can be "IP-based (p. 128) ", meaning that you
have a different IP address for every web site, or "name-based (p. 125) ", meaning that you have multiple names
running on each IP address. The fact that they are running on the same physical server is not apparent to the end user.

Apache was one of the first servers to support IP-based virtual hosts right out of the box. Versions 1.1 and later of
Apache support both IP-based and name-based virtual hosts (vhosts). The latter variant of virtual hosts is sometimes
also called host-based or non-IP virtual hosts.

Below is a list of documentation pages which explain all details of virtual host support in Apache HTTP Server:

See also

e MOD_VHOST_ALIAS

e Name-based virtual hosts (p. 125)
IP-based virtual hosts (p. 128)
Virtual host examples (p. 134)

File descriptor limits (p. 144)
e Mass virtual hosting (p. 130)

Details of host matching (p. 141)

Virtual Host Support

e Name-based Virtual Hosts (p. 125) (More than one web site per IP address)
IP-based Virtual Hosts (p. 128) (An IP address for each web site)

Virtual Host examples for common setups (p. 134)

File Descriptor Limits (p. 144) (or, Too many log files)

Dynamically Configured Mass Virtual Hosting (p. 130)
In-Depth Discussion of Virtual Host Matching (p. 141)

Configuration directives

e <VIRTUALHOST>
e SERVERNAME
e SERVERALIAS
e SERVERPATH

If you are trying to debug your virtual host configuration, you may find the Apache —S command line switch useful.
That is, type the following command:

/usr/local/apache2/bin/httpd -S

This command will dump out a description of how Apache parsed the configuration file. Careful examination of the
IP addresses and server names may help uncover configuration mistakes. (See the docs for the httpd program for
other command line options)

3.2. NAME-BASED VIRTUAL HOST SUPPORT 125

3.2 Name-based Virtual Host Support

This document describes when and how to use name-based virtual hosts.

See also

o [P-based Virtual Host Support (p. 128)
e An In-Depth Discussion of Virtual Host Matching (p. 141)
e Dynamically configured mass virtual hosting (p. 130)

e Virtual Host examples for common setups (p. 134)

Name-based vs. IP-based Virtual Hosts

IP-based virtual hosts (p. 128) use the IP address of the connection to determine the correct virtual host to serve.
Therefore you need to have a separate IP address for each host.

With name-based virtual hosting, the server relies on the client to report the hostname as part of the HTTP headers.
Using this technique, many different hosts can share the same IP address.

Name-based virtual hosting is usually simpler, since you need only configure your DNS server to map each hostname
to the correct IP address and then configure the Apache HTTP Server to recognize the different hostnames. Name-
based virtual hosting also eases the demand for scarce IP addresses. Therefore you should use name-based virtual
hosting unless you are using equipment that explicitly demands IP-based hosting. Historical reasons for IP-based
virtual hosting based on client support are no longer applicable to a general-purpose web server.

Name-based virtual hosting builds off of the IP-based virtual host selection algorithm, meaning that searches for the
proper server name occur only between virtual hosts that have the best IP-based address.

How the server selects the proper name-based virtual host

It is important to recognize that the first step in name-based virtual host resolution is [P-based resolution. Name-based
virtual host resolution only chooses the most appropriate name-based virtual host after narrowing down the candidates
to the best IP-based match. Using a wildcard (*) for the IP address in all of the VirtualHost directives makes this
IP-based mapping irrelevant.

When a request arrives, the server will find the best (most specific) matching <VIRTUALHOST> argument based on
the IP address and port used by the request. If there is more than one virtual host containing this best-match address
and port combination, Apache will further compare the SERVERNAME and SERVERALIAS directives to the server
name present in the request.

If you omit the SERVERNAME directive from any name-based virtual host, the server will default to a fully qualified
domain name (FQDN) derived from the system hostname. This implicitly set server name can lead to counter-intuitive
virtual host matching and is discouraged.

The default name-based vhost for an IP and port combination

If no matching ServerName or ServerAlias is found in the set of virtual hosts containing the most specific matching
IP address and port combination, then the first listed virtual host that matches that will be used.

126 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

Using Name-based Virtual Hosts

Related Modules Related Directives

CORE DOCUMENTROOT
SERVERALIAS
SERVERNAME
<VIRTUALHOST>

The first step is to create a <VIRTUALHOST> block for each different host that you would like to serve. Inside each
<VIRTUALHOST> block, you will need at minimum a SERVERNAME directive to designate which host is served and
a DOCUMENTROOT directive to show where in the filesystem the content for that host lives.

iMain host goes away

Any request that doesn’t match an existing <VIRTUALHOST> is handled by the global server
configuration, regardless of the hostname or ServerName.

When you add a name-based virtual host to an existing server, and the virtual host arguments
match preexisting IP and port combinations, requests will now be handled by an explicit vir-
tual host. In this case, it’s usually wise to create a default virtual host with a SERVERNAME
matching that of the base server. New domains on the same interface and port, but requiring
separate configurations, can then be added as subsequent (non-default) virtual hosts.

: ServerName inheritance

It is best to always explicitly list a SERVERNAME in every name-based virtual host.

If a VIRTUALHOST doesn’t specify a SERVERNAME, a server name will be inherited from the
base server configuration. If no server name was specified globally, one is detected at startup
through reverse DNS resolution of the first listening address. In either case, this inherited
server name will influence name-based virtual host resolution, so it is best to always explicitly
list a SERVERNAME in every name-based virtual host.

For example, suppose that you are serving the domain www.example.com and you wish to add the virtual host
other.example.com, which points at the same IP address. Then you simply add the following to httpd. conf:

<VirtualHost =%:80>
This first-listed virtual host is also the default for *:80
ServerName www.example.com
ServerAlias example.com
DocumentRoot "/www/domain"
</VirtualHost>

<VirtualHost =:80>
ServerName other.example.com
DocumentRoot "/www/otherdomain"
</VirtualHost>

You can alternatively specify an explicit IP address in place of the = in <VIRTUALHOST> directives. For example,
you might want to do this in order to run some name-based virtual hosts on one IP address, and either IP-based, or
another set of name-based virtual hosts on another address.

Many servers want to be accessible by more than one name. This is possible with the SERVERALIAS directive, placed
inside the <VIRTUALHOST>> section. For example in the first <VIRTUALHOST> block above, the SERVERALIAS
directive indicates that the listed names are other names which people can use to see that same web site:

ServerAlias example.com x.example.com

3.2. NAME-BASED VIRTUAL HOST SUPPORT 127

then requests for all hosts in the example . com domain will be served by the www . example . com virtual host. The
wildcard characters « and ? can be used to match names. Of course, you can’t just make up names and place them in
SERVERNAME or ServerAlias. You must first have your DNS server properly configured to map those names to
an IP address associated with your server.

Name-based virtual hosts for the best-matching set of <VIRTUALHOST>s are processed in the order they appear in the
configuration. The first matching SERVERNAME or SERVERALIAS is used, with no different precedence for wildcards
(nor for ServerName vs. ServerAlias).

The complete list of names in the VIRTUALHOST directive are treated just like a (non wildcard) SERVERALIAS.

Finally, you can fine-tune the configuration of the virtual hosts by placing other directives inside the <VIRTUAL-
HoOST> containers. Most directives can be placed in these containers and will then change the configuration only of
the relevant virtual host. To find out if a particular directive is allowed, check the Context (p. 377) of the directive.
Configuration directives set in the main server context (outside any < VIRTUALHOST> container) will be used only if
they are not overridden by the virtual host settings.

128 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION
3.3 Apache IP-based Virtual Host Support

See also

e Name-based Virtual Hosts Support (p. 125)

What is IP-based virtual hosting

IP-based virtual hosting is a method to apply different directives based on the IP address and port a request is received
on. Most commonly, this is used to serve different websites on different ports or interfaces.

In many cases, name-based virtual hosts (p. 125) are more convenient, because they allow many virtual hosts to share
a single address/port. See Name-based vs. IP-based Virtual Hosts (p. 125) to help you decide.

System requirements

As the term IP-based indicates, the server must have a different IP address/port combination for each IP-based
virtual host. This can be achieved by the machine having several physical network connections, or by use of virtual
interfaces which are supported by most modern operating systems (see system documentation for details, these are
frequently called "ip aliases", and the "ifconfig" command is most commonly used to set them up), and/or using
multiple port numbers.

In the terminology of Apache HTTP Server, using a single IP address but multiple TCP ports, is also IP-based virtual
hosting.

How to set up Apache

There are two ways of configuring apache to support multiple hosts. Either by running a separate ht t pd daemon for
each hostname, or by running a single daemon which supports all the virtual hosts.

Use multiple daemons when:

e There are security partitioning issues, such as company1 does not want anyone at company?2 to be able to read
their data except via the web. In this case you would need two daemons, each running with different USER,
GROUP, LISTEN, and SERVERROOT settings.

e You can afford the memory and file descriptor requirements of listening to every IP alias on the machine. It’s
only possible to LISTEN to the "wildcard" address, or to specific addresses. So if you have a need to listen
to a specific address for whatever reason, then you will need to listen to all specific addresses. (Although one
httpd could listen to N-1 of the addresses, and another could listen to the remaining address.)

Use a single daemon when:

e Sharing of the httpd configuration between virtual hosts is acceptable.

e The machine services a large number of requests, and so the performance loss in running separate daemons may
be significant.

Setting up multiple daemons

Create a separate httpd installation for each virtual host. For each installation, use the LISTEN directive in the
configuration file to select which IP address (or virtual host) that daemon services. e.g.

3.3. APACHE IP-BASED VIRTUAL HOST SUPPORT 129
Listen 192.0.2.100:80

It is recommended that you use an IP address instead of a hostname (see DNS caveats (p. 121)).

Setting up a single daemon with virtual hosts

For this case, a single ht tpd will service requests for the main server and all the virtual hosts. The VIRTUALHOST
directive in the configuration file is used to set the values of SERVERADMIN, SERVERNAME, DOCUMENTROOT,
ERRORLOG and TRANSFERLOG or CUSTOMLOG configuration directives to different values for each virtual host.

e.g.

<VirtualHost 172.20.30.40:80>
ServerAdmin webmaster@wwwl.example.com
DocumentRoot "/www/vhosts/wwwl"
ServerName wwwl.example.com
ErrorLog "/www/logs/wwwl/error_log"
CustomLog "/www/logs/wwwl/access_log" combined
</VirtualHost>

<VirtualHost 172.20.30.50:80>
ServerAdmin "webmaster@www2.example.org"
DocumentRoot "/www/vhosts/www2"
ServerName www2.example.org
ErrorLog "/www/logs/www2/error_log"
CustomLog "/www/logs/www2/access_log" combined
</VirtualHost>

It is recommended that you use an IP address instead of a hostname in the <VirtualHost> directive (see DNS caveats
(p. 121)).

Specific IP addresses or ports have precedence over their wildcard equivalents, and any virtual host that matches has
precedence over the servers base configuration.

Almost any configuration directive can be put in the VirtualHost directive, with the exception of directives that control
process creation and a few other directives. To find out if a directive can be used in the VirtualHost directive, check
the Context (p. 377) using the directive index (p. 1106) .

SUEXECUSERGROUP may be used inside a VirtualHost directive if the SUEXEC wrapper (p. 115) is used.

SECURITY: When specifying where to write log files, be aware of some security risks which are present if anyone
other than the user that starts Apache has write access to the directory where they are written. See the security tips (p.
364) document for details.

130 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION
3.4 Dynamically Configured Mass Virtual Hosting

This document describes how to efficiently serve an arbitrary number of virtual hosts with the Apache HTTP Server.
A separate document (p. 162) discusses using MOD_REWRITE to create dynamic mass virtual hosts.

Motivation

The techniques described here are of interest if your ht tpd. conf contains many <VirtualHost> sections that
are substantially the same, for example:

<VirtualHost 111.22.33.44>

ServerName customer—-1.example.com

DocumentRoot "/www/hosts/customer—-1.example.com/docs"

ScriptAlias "/cgi-bin/" "/www/hosts/customer—-1.example.com/cgi-bin"
</VirtualHost>

<VirtualHost 111.22.33.44>

ServerName customer-2.example.com

DocumentRoot "/www/hosts/customer-2.example.com/docs"

ScriptAlias "/cgi-bin/" "/www/hosts/customer—-2.example.com/cgi-bin"
</VirtualHost>

<VirtualHost 111.22.33.44>

ServerName customer—-N.example.com

DocumentRoot "/www/hosts/customer—-N.example.com/docs"

ScriptAlias "/cgi-bin/" "/www/hosts/customer—-N.example.com/cgi-bin"
</VirtualHost>

We wish to replace these multiple <VirtualHost> blocks with a mechanism that works them out dynamically.
This has a number of advantages:

1. Your configuration file is smaller, so Apache starts more quickly and uses less memory. Perhaps more impor-
tantly, the smaller configuration is easier to maintain, and leaves less room for errors.

2. Adding virtual hosts is simply a matter of creating the appropriate directories in the filesystem and entries in the
DNS - you don’t need to reconfigure or restart Apache.

The main disadvantage is that you cannot have a different log file for each virtual host; however, if you have many
virtual hosts, doing this can be a bad idea anyway, because of the number of file descriptors needed (p. 144) . It is
better to log to a pipe or a fifo (p. 56) , and arrange for the process at the other end to split up the log files into one per
virtual host. One example of such a process can be found in the split-logfile (p. 336) utility.

Overview

A virtual host is defined by two pieces of information: its IP address, and the contents of the Host : header in
the HTTP request. The dynamic mass virtual hosting technique used here is based on automatically inserting this
information into the pathname of the file that is used to satisfy the request. This can be most easily done by using
MOD_VHOST_ALIAS with Apache httpd. Alternatively, mod_rewrite can be used (p. 162) .

Both of these modules are disabled by default; you must enable one of them when configuring and building Apache
httpd if you want to use this technique.

3.4. DYNAMICALLY CONFIGURED MASS VIRTUAL HOSTING 131

A couple of things need to be determined from the request in order to make the dynamic virtual host look like a normal
one. The most important is the server name, which is used by the server to generate self-referential URLs etc. It is
configured with the ServerName directive, and it is available to CGIs via the SERVER_NAME environment variable.
The actual value used at run time is controlled by the USECANONICALNAME setting. With UseCanonicalName
Of £, the server name is taken from the contents of the Host : header in the request. With UseCanonicalName
DNS, it is taken from a reverse DNS lookup of the virtual host’s IP address. The former setting is used for name-based
dynamic virtual hosting, and the latter is used for IP-based hosting. If httpd cannot work out the server name because
there is no Host : header, or the DNS lookup fails, then the value configured with ServerName is used instead.

The other thing to determine is the document root (configured with DocumentRoot and available to CGI scripts
via the DOCUMENT _ROOT environment variable). In a normal configuration, this is used by the core module when
mapping URISs to filenames, but when the server is configured to do dynamic virtual hosting, that job must be taken over
by another module (either MOD_VHOST_ALIAS or MOD_REWRITE), which has a different way of doing the mapping.
Neither of these modules is responsible for setting the DOCUMENT_ROOT environment variable so if any CGIs or SSI
documents make use of it, they will get a misleading value.

Dynamic Virtual Hosts with mod _vhost_alias

This extract from httpd.conf implements the virtual host arrangement outlined in the Motivation section above
using MOD_VHOST_ALIAS.

get the server name from the Host: header
UseCanonicalName Off

this log format can be split per-virtual-host based on the first field
using the split-logfile utility.

LogFormat "%V %h %1 %u %t \"%r\" %s $b" vcommon

CustomLog "logs/access_log" vcommon

include the server name in the filenames used to satisfy requests
VirtualDocumentRoot "/www/hosts/%0/docs"
VirtualScriptAlias "/www/hosts/%0/cgi-bin"

This configuration can be changed into an IP-based virtual hosting solution by just turning UseCanonicalName
Off into UseCanonicalName DNS. The server name that is inserted into the filename is then derived from the IP
address of the virtual host. The variable %0 references the requested servername, as indicated in the Host : header.

See the MOD_VHOST_ALIAS documentation for more usage examples.

Simplified Dynamic Virtual Hosts
This is an adjustment of the above system, tailored for an ISP’s web hosting server. Using $2, we can select substrings

of the server name to use in the filename so that, for example, the documents for www.user.example.com are
found in /home /user/www. It uses a single cgi-bin directory instead of one per virtual host.

UseCanonicalName Off

LogFormat "%V %$h %1 %u %t \"%r\" %s %$b" vcommon
CustomLog "logs/access_log" vcommon

include part of the server name in the filenames
VirtualDocumentRoot "/home/%2/www"

132 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

single cgi-bin directory
ScriptAlias "/cgi-bin/" "/www/std-cgi/"

There are examples of more complicated VirtualDocumentRoot settings in the MOD_VHOST_ALIAS documen-
tation.

Using Multiple Virtual Hosting Systems on the Same Server

With more complicated setups, you can use httpd’s normal <VirtualHost> directives to control the scope of the
various virtual hosting configurations. For example, you could have one IP address for general customers’ home-
pages, and another for commercial customers, with the following setup. This can be combined with conventional
<VirtualHost> configuration sections, as shown below.

UseCanonicalName Off
LogFormat "%V %$h %1 %u %t \"%r\" %s %$b" vcommon

<Directory "/www/commercial">
Options FollowSymLinks
AllowOverride All
</Directory>

<Directory "/www/homepages">
Options FollowSymLinks
AllowOverride None
</Directory>

<VirtualHost 111.22.33.44>
ServerName www.commercial.example.com

CustomLog "logs/access_log.commercial"™ vcommon
VirtualDocumentRoot "/www/commercial/%$0/docs"
VirtualScriptAlias "/www/commercial/%0/cgi-bin"

</VirtualHost>

<VirtualHost 111.22.33.45>
ServerName www.homepages.example.com

CustomLog "logs/access_log.homepages" vcommon
VirtualDocumentRoot "/www/homepages/%$0/docs"

ScriptAlias "/cgi-bin/" "/www/std-cgi/"
</VirtualHost>

i Note

If the first VirtualHost block does not include a SERVERNAME directive, the reverse DNS of
the relevant IP will be used instead. If this is not the server name you wish to use, a bogus
entry (eg. ServerName none.example.com) can be added to get around this behaviour.

3.4. DYNAMICALLY CONFIGURED MASS VIRTUAL HOSTING 133

More Efficient IP-Based Virtual Hosting

The configuration changes suggested to turn the first example into an IP-based virtual hosting setup result in a rather
inefficient setup. A new DNS lookup is required for every request. To avoid this overhead, the filesystem can be
arranged to correspond to the IP addresses, instead of to the host names, thereby negating the need for a DNS lookup.
Logging will also have to be adjusted to fit this system.

get the server name from the reverse DNS of the IP address
UseCanonicalName DNS

include the IP address in the logs so they may be split
LogFormat "%A %$h %1 %u %t \"%r\" %s %$b" vcommon
CustomLog "logs/access_log" vcommon

include the IP address in the filenames
VirtualDocumentRootIP "/www/hosts/%0/docs"
VirtualScriptAliasIP "/www/hosts/%$0/cgi-bin"

Mass virtual hosts with mod_rewrite

Mass virtual hosting may also be accomplished using MOD_REWRITE, either using simple REWRITERULE direc-
tives, or using more complicated techniques such as storing the vhost definitions externally and accessing them via
REWRITEMAP. These techniques are discussed in the rewrite documentation (p. 162) .

Mass virtual hosts with mod_macro

Another option for dynamically generated virtual hosts is MOD_MACRO, with which you can create a virtualhost
template, and invoke it for multiple hostnames. An example of this is provided in the Usage section of the module
documentation.

134 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

3.5 VirtualHost Examples

This document attempts to answer the commonly-asked questions about setting up virtual hosts (p. 124) . These
scenarios are those involving multiple web sites running on a single server, via name-based (p. 125) or IP-based (p.
128) virtual hosts.

Running several name-based web sites on a single IP address.

Your server has multiple hostnames that resolve to a single address, and you want to respond differently for
www.example.comand www . example.org.

i Note

Creating virtual host configurations on your Apache server does not magically cause DNS
entries to be created for those host names. You must have the names in DNS, resolving to your
IP address, or nobody else will be able to see your web site. You can put entries in your hosts
file for local testing, but that will work only from the machine with those host s entries.

Ensure that Apache listens on port 80
Listen 80
<VirtualHost =:80>
DocumentRoot "/www/examplel"
ServerName www.example.com

Other directives here
</VirtualHost>

<VirtualHost =:80>
DocumentRoot "/www/examplel2"
ServerName www.example.org

Other directives here
</VirtualHost>

The asterisks match all addresses, so the main server serves no requests. Due to the fact that the virtual host with
ServerName www.example.com is first in the configuration file, it has the highest priority and can be seen
as the default or primary server. That means that if a request is received that does not match one of the specified
ServerName directives, it will be served by this first VirtualHost.

The above configuration is what you will want to use in almost all name-based virtual hosting situations. The only
thing that this configuration will not work for, in fact, is when you are serving different content based on differing IP
addresses or ports.

:f> Note

You may replace = with a specific IP address on the system. Such virtual hosts will only be
used for HTTP requests received on connection to the specified IP address.

However, it is additionally useful to use *» on systems where the IP address is not predictable
- for example if you have a dynamic IP address with your ISP, and you are using some variety
of dynamic DNS solution. Since * matches any IP address, this configuration would work
without changes whenever your IP address changes.

3.5. VIRTUALHOST EXAMPLES 135

Name-based hosts on more than one IP address.

:> Note

Any of the techniques discussed here can be extended to any number of IP addresses.

The server has two IP addresses. On one (172.20.30.40), we will serve the "main" server,
server.example.com and on the other (172.20.30.50), we will serve two or more virtual hosts.

Listen 80

This is the "main" server running on 172.20.30.40
ServerName server.example.com
DocumentRoot "/www/mainserver"

<VirtualHost 172.20.30.50>
DocumentRoot "/www/examplel"
ServerName www.example.com

Other directives here
</VirtualHost>

<VirtualHost 172.20.30.50>
DocumentRoot "/www/examplel2"
ServerName www.example.org

Other directives here
</VirtualHost>

Any request to an address other than 172.20.30.50 will be served from the main server. A request to
172.20.30.50 with an unknown hostname, or no Host : header, will be served from www .example.com

Serving the same content on different IP addresses (such as an internal and external address).

The server machine has two IP addresses (192.168.1.1 and 172.20.30.40). The machine is sitting be-
tween an internal (intranet) network and an external (internet) network. Outside of the network, the name
server.example.com resolves to the external address (172.20.30.40), but inside the network, that same
name resolves to the internal address (192.168.1.1).

The server can be made to respond to internal and external requests with the same content, with just one
VirtualHost section.

<VirtualHost 192.168.1.1 172.20.30.40>
DocumentRoot "/www/serverl"
ServerName server.example.com
ServerAlias server

</VirtualHost>

Now requests from both networks will be served from the same VirtualHost.

i Note:

On the internal network, one can just use the name server rather than the fully qualified host
name server.example.com.

Note also that, in the above example, you can replace the list of IP addresses with %, which
will cause the server to respond the same on all addresses.

136 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

Running different sites on different ports.

You have multiple domains going to the same IP and also want to serve multiple ports. The example below illustrates
that the name-matching takes place after the best matching IP address and port combination is determined.

Listen 80
Listen 8080

<VirtualHost 172.20.30.40:80>
ServerName www.example.com
DocumentRoot "/www/domain—-80"
</VirtualHost>

<VirtualHost 172.20.30.40:8080>
ServerName www.example.com
DocumentRoot "/www/domain-8080"
</VirtualHost>

<VirtualHost 172.20.30.40:80>
ServerName www.example.org
DocumentRoot "/www/otherdomain—-80"
</VirtualHost>

<VirtualHost 172.20.30.40:8080>
ServerName www.example.org
DocumentRoot "/www/otherdomain-8080"
</VirtualHost>

IP-based virtual hosting

The server has two IP addresses (172.20.30.40 and 172.20.30.50) which resolve to the names
www.example.com and www.example . org respectively.

Listen 80

<VirtualHost 172.20.30.40>
DocumentRoot "/www/examplel"
ServerName www.example.com
</VirtualHost>

<VirtualHost 172.20.30.50>
DocumentRoot "/www/examplel2"
ServerName www.example.org
</VirtualHost>

Requests for any address not specified in one of the <VirtualHost> directives (such as localhost, for example)
will go to the main server, if there is one.

Mixed port-based and ip-based virtual hosts

The server machine has two IP addresses (172.20.30.40 and 172.20.30.50) which resolve to the names
www.example.com and www.example.org respectively. In each case, we want to run hosts on ports 80 and

3.5. VIRTUALHOST EXAMPLES 137

8080.

Listen 172.20.30.40:80
Listen 172.20.30.40:8080
Listen 172.20.30.50:80
Listen 172.20.30.50:8080

<VirtualHost 172.20.30.40:80>
DocumentRoot "/www/examplel-80"
ServerName www.example.com
</VirtualHost>

<VirtualHost 172.20.30.40:8080>
DocumentRoot "/www/examplel-8080"
ServerName www.example.com
</VirtualHost>

<VirtualHost 172.20.30.50:80>
DocumentRoot "/www/example2-80"
ServerName www.example.org
</VirtualHost>

<VirtualHost 172.20.30.50:8080>
DocumentRoot "/www/example2-8080"
ServerName www.example.org
</VirtualHost>

Mixed name-based and IP-based vhosts

Any address mentioned in the argument to a virtualhost that never appears in another virtual host is a strictly IP-based
virtual host.

Listen 80

<VirtualHost 172.20.30.40>
DocumentRoot "/www/examplel"
ServerName www.example.com

</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/examplel2"
ServerName www.example.org
</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/example3"
ServerName www.example.net
</VirtualHost>

IP-based

<VirtualHost 172.20.30.50>
DocumentRoot "/www/exampled"
ServerName www.example.edu

138 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

</VirtualHost>

<VirtualHost 172.20.30.60>
DocumentRoot "/www/example5"
ServerName www.example.gov
</VirtualHost>

Using Virtual host and mod_proxy together

The following example allows a front-end machine to proxy a virtual host through to a server running on another
machine. In the example, a virtual host of the same name is configured on a machine at 192.168.111.2. The
PROXYPRESERVEHOST ON directive is used so that the desired hostname is passed through, in case we are proxying
multiple hostnames to a single machine.

<VirtualHost x:x>
ProxyPreserveHost On
ProxyPass "/" "http://192.168.111.2/"
ProxyPassReverse "/" "http://192.168.111.2/"
ServerName hostname.example.com
</VirtualHost>

Using _default_ vhosts
default vhosts for all ports

Catching every request to any unspecified IP address and port, i.e., an address/port combination that is not used for
any other virtual host.

<VirtualHost _default_:*>
DocumentRoot "/www/default"
</VirtualHost>

Using such a default vhost with a wildcard port effectively prevents any request going to the main server.

A default vhost never serves a request that was sent to an address/port that is used for name-based vhosts. If the request
contained an unknown or no Host : header it is always served from the primary name-based vhost (the vhost for that
address/port appearing first in the configuration file).

You can use ALIASMATCH or REWRITERULE to rewrite any request to a single information page (or script).

default vhosts for different ports
Same as setup 1, but the server listens on several ports and we want to use a second _default_ vhost for port 80.

<VirtualHost _default_:80>
DocumentRoot "/www/defaultg80"
...

</VirtualHost>

<VirtualHost _default_:x>
DocumentRoot "/www/default"

...
</VirtualHost>

3.5. VIRTUALHOST EXAMPLES 139

The default vhost for port 80 (which must appear before any default vhost with a wildcard port) catches all requests
that were sent to an unspecified IP address. The main server is never used to serve a request.

default vhosts for one port
We want to have a default vhost for port 80, but no other default vhosts.

<VirtualHost _default_:80>
DocumentRoot "/www/default"

</VirtualHost>

A request to an unspecified address on port 80 is served from the default vhost. Any other request to an unspecified
address and port is served from the main server.

Any use of x in a virtual host declaration will have higher precedence than _default..

Migrating a name-based vhost to an IP-based vhost

The name-based vhost with the hostname www . example . org (from our name-based example, setup 2) should get
its own IP address. To avoid problems with name servers or proxies who cached the old IP address for the name-based
vhost we want to provide both variants during a migration phase.

The solution is easy, because we can simply add the new IP address (172.20.30.50) to the VirtualHost direc-
tive.

Listen 80
ServerName www.example.com
DocumentRoot "/www/examplel"

<VirtualHost 172.20.30.40 172.20.30.50>
DocumentRoot "/www/example2"
ServerName www.example.org
...

</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/example3"
ServerName www.example.net
ServerAlias x.example.net
...

</VirtualHost>

The vhost can now be accessed through the new address (as an IP-based vhost) and through the old address (as a
name-based vhost).

Using the ServerPath directive

We have a server with two name-based vhosts. In order to match the correct virtual host a client must send the correct
Host : header. Old HTTP/1.0 clients do not send such a header and Apache has no clue what vhost the client tried
to reach (and serves the request from the primary vhost). To provide as much backward compatibility as possible
we create a primary vhost which returns a single page containing links with an URL prefix to the name-based virtual
hosts.

140 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

<VirtualHost 172.20.30.40>
primary vhost
DocumentRoot "/www/subdomain"
RewriteEngine On
RewriteRule "." "/www/subdomain/index.html"
...
</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/subdomain/subl"
ServerName www.subl.domain.tld
ServerPath /subl/
RewriteEngine On
RewriteRule "~ (/subl/.*)" "/www/subdomain$1"
¥ ...

</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/subdomain/sub2"
ServerName www.sub2.domain.tld
ServerPath /sub2/
RewriteEngine On
RewriteRule "~ (/sub2/.*)" "/www/subdomain$1"
...

</VirtualHost>

Due to the SERVERPATH directive a request to the URL http://www.subl.domain.tld/subl/ is always
served from the subl-vhost.

A request to the URL http://www.subl.domain.t1d/ is only served from the subl-vhost if the client sent a
correct Host : header. If no Host : header is sent the client gets the information page from the primary host.

Please note that there is one oddity: A request to http://www.sub2.domain.tld/subl/ is also served from
the subl-vhost if the client sent no Host : header.

The REWRITERULE directives are used to make sure that a client which sent a correct Host : header can use both
URL variants, i.e., with or without URL prefix.

3.6. AN IN-DEPTH DISCUSSION OF VIRTUAL HOST MATCHING 141
3.6 An In-Depth Discussion of Virtual Host Matching

This document attempts to explain exactly what Apache HTTP Server does when deciding what virtual host to serve
a request from.

Most users should read about Name-based vs. IP-based Virtual Hosts (p. 125) to decide which type they want to use,
then read more about name-based (p. 125) or IP-based (p. 128) virtualhosts, and then see some examples (p. 134) .

If you want to understand all the details, then you can come back to this page.

See also

e [P-based Virtual Host Support (p. 128)
e Name-based Virtual Hosts Support (p. 125)
e Virtual Host examples for common setups (p. 134)

e Dynamically configured mass virtual hosting (p. 130)

Configuration File

There is a main server which consists of all the definitions appearing outside of <VirtualHost> sections.
There are virtual servers, called vhosts, which are defined by <VIRTUALHOST> sections.
Each VirtualHost directive includes one or more addresses and optional ports.

Hostnames can be used in place of IP addresses in a virtual host definition, but they are resolved at startup and if any
name resolutions fail, those virtual host definitions are ignored. This is, therefore, not recommended.

The address can be specified as », which will match a request if no other vhost has the explicit address on which the
request was received.

The address appearing in the VirtualHost directive can have an optional port. If the port is unspecified, it is treated
as a wildcard port, which can also be indicated explicitly using . The wildcard port matches any port.

(Port numbers specified in the VirtualHost directive do not influence what port numbers Apache will listen on,
they only control which VirtualHost will be selected to handle a request. Use the LISTEN directive to control the
addresses and ports on which the server listens.)

Collectively the entire set of addresses (including multiple results from DNS lookups) are called the vhost’s address
set.

Apache automatically discriminates on the basis of the HTTP Host header supplied by the client whenever the most
specific match for an IP address and port combination is listed in multiple virtual hosts.

The SERVERNAME directive may appear anywhere within the definition of a server. However, each appearance
overrides the previous appearance (within that server). If no ServerName is specified, the server attempts to deduce
it from the server’s IP address.

The first name-based vhost in the configuration file for a given IP:port pair is significant because it is used for all
requests received on that address and port for which no other vhost for that IP:port pair has a matching ServerName or
ServerAlias. It is also used for all SSL connections if the server does not support Server Name Indication.

The complete list of names in the VirtualHost directive are treated just like a (non wildcard) ServerAlias (but
are not overridden by any ServerAlias statement).

For every vhost various default values are set. In particular:

1. If a vhost has no SERVERADMIN, TIMEOUT, KEEPALIVETIMEOUT, KEEPALIVE, MAXKEEPALIV-
EREQUESTS, RECEIVEBUFFERSIZE, or SENDBUFFERSIZE directive then the respective value is inherited from
the main server. (That is, inherited from whatever the final setting of that value is in the main server.)

142 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

2. The "lookup defaults" that define the default directory permissions for a vhost are merged with those of the
main server. This includes any per-directory configuration information for any module.

3. The per-server configs for each module from the main server are merged into the vhost server.
Essentially, the main server is treated as "defaults" or a "base" on which to build each vhost. But the positioning
of these main server definitions in the config file is largely irrelevant — the entire config of the main server has been

parsed when this final merging occurs. So even if a main server definition appears after a vhost definition it might
affect the vhost definition.

If the main server has no ServerName at this point, then the hostname of the machine that httpd is running
on is used instead. We will call the main server address set those IP addresses returned by a DNS lookup on the
ServerName of the main server.

For any undefined ServerName fields, a name-based vhost defaults to the address given first in the VirtualHost
statement defining the vhost.

Any vhost that includes the magic _default_ wildcard is given the same ServerName as the main server.

Virtual Host Matching

The server determines which vhost to use for a request as follows:

IP address lookup

When the connection is first received on some address and port, the server looks for all the VirtualHost definitions
that have the same IP address and port.

If there are no exact matches for the address and port, then wildcard (*) matches are considered.
If no matches are found, the request is served by the main server.

If there are VirtualHost definitions for the IP address, the next step is to decide if we have to deal with an IP-based
or a name-based vhost.

IP-based vhost

If there is exactly one VirtualHost directive listing the IP address and port combination that was determined to be
the best match, no further actions are performed and the request is served from the matching vhost.

Name-based vhost

If there are multiple VirtualHost directives listing the IP address and port combination that was determined to be
the best match, the "list" in the remaining steps refers to the list of vhosts that matched, in the order they were in the
configuration file.

If the connection is using SSL, the server supports Server Name Indication, and the SSL client handshake includes
the TLS extension with the requested hostname, then that hostname is used below just like the Host : header would
be used on a non-SSL connection. Otherwise, the first name-based vhost whose address matched is used for SSL
connections. This is significant because the vhost determines which certificate the server will use for the connection.

If the request contains a Host : header field, the list is searched for the first vhost with a matching ServerName
or ServerAlias, and the request is served from that vhost. A Host : header field can contain a port number, but
Apache always ignores it and matches against the real port to which the client sent the request.

The first vhost in the config file with the specified IP address has the highest priority and catches any request to an
unknown server name, or a request without a Host : header field (such as a HTTP/1.0 request).

3.6. AN IN-DEPTH DISCUSSION OF VIRTUAL HOST MATCHING 143

Persistent connections

The IP lookup described above is only done once for a particular TCP/IP session while the name lookup is done on
every request during a KeepAlive/persistent connection. In other words, a client may request pages from different
name-based vhosts during a single persistent connection.

Absolute URI

If the URI from the request is an absolute URI, and its hostname and port match the main server or one of the configured
virtual hosts and match the address and port to which the client sent the request, then the scheme/hostname/port prefix
is stripped off and the remaining relative URI is served by the corresponding main server or virtual host. If it does not
match, then the URI remains untouched and the request is taken to be a proxy request.

Observations

e Name-based virtual hosting is a process applied after the server has selected the best matching IP-based virtual
host.

e If you don’t care what IP address the client has connected to, use a "*" as the address of every virtual host, and
name-based virtual hosting is applied across all configured virtual hosts.

e ServerName and ServerAlias checks are never performed for an IP-based vhost.

e Only the ordering of name-based vhosts for a specific address set is significant. The one name-based vhosts that
comes first in the configuration file has the highest priority for its corresponding address set.

e Any port in the Host : header field is never used during the matching process. Apache always uses the real
port to which the client sent the request.

e If two vhosts have an address in common, those common addresses act as name-based virtual hosts implicitly.
This is new behavior as of 2.3.11.

e The main server is only used to serve a request if the IP address and port number to which the client connected
does not match any vhost (including a = vhost). In other words, the main server only catches a request for an
unspecified address/port combination (unless there is a _de fault_ vhost which matches that port).

e You should never specify DNS names in VirtualHost directives because it will force your server to rely on
DNS to boot. Furthermore it poses a security threat if you do not control the DNS for all the domains listed.
There’s more information (p. 121) available on this and the next two topics.

e ServerName should always be set for each vhost. Otherwise A DNS lookup is required for each vhost.
Tips
In addition to the tips on the DNS Issues (p. 121) page, here are some further tips:

e Place all main server definitions before any VirtualHost definitions. (This is to aid the readability of the
configuration — the post-config merging process makes it non-obvious that definitions mixed in around virtual
hosts might affect all virtual hosts.)

144 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION
3.7 File Descriptor Limits

When using a large number of Virtual Hosts, Apache may run out of available file descriptors (sometimes called file
handles) if each Virtual Host specifies different log files. The total number of file descriptors used by Apache is
one for each distinct error log file, one for every other log file directive, plus 10-20 for internal use. Unix operating
systems limit the number of file descriptors that may be used by a process; the limit is typically 64, and may usually
be increased up to a large hard-limit.

Although Apache attempts to increase the limit as required, this may not work if:

1. Your system does not provide the setrlimit () system call.

2. The setrlimit (RLIMIT_-NOFILE) call does not function on your system (such as Solaris 2.3)

3. The number of file descriptors required exceeds the hard limit.

4. Your system imposes other limits on file descriptors, such as a limit on stdio streams only using file descriptors
below 256. (Solaris 2)

In the event of problems you can:

e Reduce the number of log files; don’t specify log files in the <VIRTUALHOST> sections, but only log to the
main log files. (See Splitting up your log files, below, for more information on doing this.)

e If you system falls into 1 or 2 (above), then increase the file descriptor limit before starting Apache, using a
script like

#!/bin/sh
ulimit -S -n 100
exec httpd

Splitting up your log files
If you want to log multiple virtual hosts to the same log file, you may want to split up the log files afterwards in order
to run statistical analysis of the various virtual hosts. This can be accomplished in the following manner.

First, you will need to add the virtual host information to the log entries. This can be done using the LOGFORMAT
directive, and the $v variable. Add this to the beginning of your log format string:

LogFormat "%v %$h %1 %$u %t \"%r\" %>s $b" vhost
CustomLog "logs/multiple_vhost_log" vhost

This will create a log file in the common log format, but with the canonical virtual host (whatever appears in the
SERVERNAME directive) prepended to each line. (See MOD_LOG_CONFIG for more about customizing your log files.)

When you wish to split your log file into its component parts (one file per virtual host) you can use the program
split-logfile (p. 336) to accomplish this. You’ll find this program in the support directory of the
Apache distribution.

Run this program with the command:

split-logfile < /logs/multiple_vhost_log

This program, when run with the name of your vhost log file, will generate one file for each virtual host that appears
in your log file. Each file will be called hostname. log.

Chapter 4

URL Rewriting Guide

145

146 CHAPTER 4. URL REWRITING GUIDE
4.1 Apache mod rewrite

MOD_REWRITE provides a way to modify incoming URL requests, dynamically, based on regular expression (p. 147)
rules. This allows you to map arbitrary URLSs onto your internal URL structure in any way you like.

It supports an unlimited number of rules and an unlimited number of attached rule conditions for each rule to provide
a really flexible and powerful URL manipulation mechanism. The URL manipulations can depend on various tests:
server variables, environment variables, HTTP headers, time stamps, external database lookups, and various other
external programs or handlers, can be used to achieve granular URL matching.

Rewrite rules can operate on the full URLS, including the path-info and query string portions, and may be used
in per-server context (httpd. conf), per-virtualhost context (<VIRTUALHOST> blocks), or per-directory context
(.htaccess files and <DIRECTORY > blocks). The rewritten result can lead to further rules, internal sub-processing,
external request redirection, or proxy passthrough, depending on what flags (p. 178) you attach to the rules.

Since mod_rewrite is so powerful, it can indeed be rather complex. This document supplements the reference docu-
mentation (p. 867) , and attempts to allay some of that complexity, and provide highly annotated examples of com-
mon scenarios that you may handle with mod_rewrite. But we also attempt to show you when you should not use
mod_rewrite, and use other standard Apache features instead, thus avoiding this unnecessary complexity.

e mod_rewrite reference documentation (p. 867)

e Introduction to regular expressions and mod_rewrite (p. 147)
e RewriteRule Flags (p. 178)

e Using RewriteMap (p. 166)

e When NOT to use mod_rewrite (p. 175)

e Using mod_rewrite for redirection and remapping of URLs (p. 152)
e Using mod_rewrite to control access (p. 159)

e Dynamic virtual hosts with mod_rewrite (p. 162)

e Dynamic proxying with mod_rewrite (p. 165)

e Advanced techniques (p. 172)

e Technical details (p. 187)

See also

e mod rewrite reference documentation (p. 867)
e Mapping URLs to the Filesystem (p. 64)

e mod_rewrite wiki'

e Glossary (p. 1096)

Uhttp://wiki.apache.org/httpd/Rewrite

http://wiki.apache.org/httpd/Rewrite

4.2. APACHE MOD_REWRITE INTRODUCTION 147

4.2 Apache mod rewrite Introduction

This document supplements the MOD_REWRITE reference documentation (p. 867) . It describes the basic concepts
necessary for use of MOD_REWRITE. Other documents go into greater detail, but this doc should help the beginner get
their feet wet.

See also

e Module documentation (p. 867)

e Redirection and remapping (p. 152)
e Controlling access (p. 159)

e Virtual hosts (p. 162)

e Proxying (p. 165)

e Using RewriteMap (p. 166)

e Advanced techniques (p. 172)

e When not to use mod_rewrite (p. 175)

Introduction

The Apache module MOD_REWRITE is a very powerful and sophisticated module which provides a way to do URL
manipulations. With it, you can do nearly all types of URL rewriting that you may need. It is, however, somewhat
complex, and may be intimidating to the beginner. There is also a tendency to treat rewrite rules as magic incantation,
using them without actually understanding what they do.

This document attempts to give sufficient background so that what follows is understood, rather than just copied
blindly.

Remember that many common URL-manipulation tasks don’t require the full power and complexity of
MOD_REWRITE. For simple tasks, see MOD_ALIAS and the documentation on mapping URLs to the filesystem (p.
64) .

Finally, before proceeding, be sure to configure MOD_REWRITE’s log level to one of the trace levels using the
LOGLEVEL directive. Although this can give an overwhelming amount of information, it is indispensable in de-
bugging problems with MOD_REWRITE configuration, since it will tell you exactly how each rule is processed.

Regular Expressions

mod_rewrite uses the Perl Compatible Regular Expression? vocabulary. In this document, we do not attempt to provide
a detailed reference to regular expressions. For that, we recommend the PCRE man pages®, the Perl regular expression
man page”, and Mastering Regular Expressions, by Jeffrey Friedl®.

In this document, we attempt to provide enough of a regex vocabulary to get you started, without being overwhelming,
in the hope that REWRITERULEs will be scientific formulae, rather than magical incantations.

Zhttp://pcre.org/

3http://pcre.org/pere.txt
“http://perldoc.perl.org/perlre html
Shttp://shop.oreilly.com/product/9780596528126.do

http://pcre.org/
http://pcre.org/pcre.txt
http://perldoc.perl.org/perlre.html
http://shop.oreilly.com/product/9780596528126.do

148

Regex vocabulary

CHAPTER 4. URL REWRITING GUIDE

The following are the minimal building blocks you will need, in order to write regular expressions and
REWRITERULEs. They certainly do not represent a complete regular expression vocabulary, but they are a good
place to start, and should help you read basic regular expressions, as well as write your own.

the string.
Groups several characters into a single
unit, and captures a match for use in a

Character Meaning Example
. Matches any single character c.t will match cat, cot, cut, etc.
+ Repeats the previous match one or more a+ matches a, aa, aaa, etc
times
* Repeats the previous match zero or more ax matches all the same things a+
times. matches, but will also match an empty
string.
? Makes the match optional. colou?r will match color and
colour.
" Called an anchor, matches the beginning " a matches a string that begins with a
of the string
S The other anchor, this matches the end of ~ a$ matches a string that ends with a.

(ab) + matches ababab - that is, the +
applies to the group. For more on back-

backreference. references see below.

[] A character class - matches one of the c[uoca]t matches cut, cot or cat.
characters

[~] Negative character class - matches any c[”/]t matches cat or c=t but not
character not specified c/t

In MOD_REWRITE the ! character can be used before a regular expression to negate it. This is, a string will be
considered to have matched only if it does not match the rest of the expression.

Regex Back-Reference Availability

One important thing here has to be remembered: Whenever you use parentheses in Pattern or in one of the Cond-
Fattern, back-references are internally created which can be used with the strings $N and %N (see below). These are
available for creating the Substitution parameter of a REWRITERULE or the 7estString parameter of a REWRITECOND.

Captures in the REWRITERULE patterns are (counterintuitively) available to all preceding REWRITECOND directives,
because the REWRITERULE expression is evaluated before the individual conditions.

Figure 1 shows to which locations the back-references are transferred for expansion as well as illustrating the flow of
the RewriteRule, RewriteCond matching. In the next chapters, we will be exploring how to use these back-references,
so do not fret if it seems a bit alien to you at first.

v
RewriteCond %{DOCUMENT_ROOT}/%1 !-f

|
RewriteCond %{HTTP_HOST} ~(admin.example.com)$
RewriteRule ~/?([a-z]+)/(.*)$ /admin.foo?page=%1&id

Figure I1: The back-reference flow through a rule.
In this example, a request for /test/1234
/admin. foo?page=test&id=1234s&host=admin.example.comn.

would be transformed into

4.2. APACHE MOD_REWRITE INTRODUCTION 149

RewriteRule Basics

A REWRITERULE consists of three arguments separated by spaces. The arguments are

1. Pattern: which incoming URLSs should be affected by the rule;
2. Substitution: where should the matching requests be sent;

3. [flags]: options affecting the rewritten request.

The Pattern is a regular expression. It is initially (for the first rewrite rule or until a substitution occurs) matched
against the URL-path of the incoming request (the part after the hostname but before any question mark indicating the
beginning of a query string) or, in per-directory context, against the request’s path relative to the directory for which
the rule is defined. Once a substitution has occurred, the rules that follow are matched against the substituted value.

Syntax of a RewriteRule:

Optional:
All kinds of special actions:

checked against the b= , : :
requested URI, which is the Define \-EI‘l-El]:_:IlE':-b_. Control
~ headers, Redirect, Deny...

part after http://hostname

Regular Expression

' v

o ~

= . = = e = - i =ik =
Kowortef e Pattern Swhstidedion L P!iﬁrj 1
&

One of the following:

1. Modification to the part
matched by the Pattern

2. Absolute path to a file

q. Full URL to redirect to

4. A dash "-" to do nothing

Figure 2: Syntax of the RewriteRule directive.

The Substitution can itself be one of three things:

A full filesystem path to a resource RewriteRule "~ /games" "/usr/local/games/web"

This maps a request to an arbitrary location on your filesystem, much like the ALIAS directive.

A web-path to a resource RewriteRule "~ /foo$" "/bar"
If DOCUMENTROOT is set to /usr/local/apache2/htdocs, then this directive would map requests for
http://example.com/foo tothe path /usr/local/apache2/htdocs/bar.

An absolute URL RewriteRule """ /product/view$" "http://site2.example.com/seeproduct.html" [R]
This tells the client to make a new request for the specified URL.

150 CHAPTER 4. URL REWRITING GUIDE

The Substitution can also contain back-references to parts of the incoming URL-path matched by the Pattern. Consider
the following:

RewriteRule """ /product/ (.x)/view$" "/var/web/productdb/$1"
The variable $1 will be replaced with whatever text was matched by the expression inside the parenthesis in the

Pattern. For example, a request for http://example.com/product/rl14df/view will be mapped to the
path /var/web/productdb/rl14df.

If there is more than one expression in parenthesis, they are available in order in the variables $1, $2, $3, and so on.

Rewrite Flags

The behavior of a REWRITERULE can be modified by the application of one or more flags to the end of the rule. For
example, the matching behavior of a rule can be made case-insensitive by the application of the [NC] flag:

RewriteRule "“puppy.html" "smalldog.html" [NC]

For more details on the available flags, their meanings, and examples, see the Rewrite Flags (p. 178) document.

Rewrite Conditions

One or more REWRITECOND directives can be used to restrict the types of requests that will be subject to the following
REWRITERULE. The first argument is a variable describing a characteristic of the request, the second argument is a
regular expression that must match the variable, and a third optional argument is a list of flags that modify how the
match is evaluated.

Syntax of a RewriteCond:

Typically a Server Variable Optional:
which is of the form NC - Ignore Case
%{VARIABLE} OR - Logical "or"
~ NV - No Vary

Y
KewriteCond TeﬁfoHtﬂ Condition Ef?ﬂjS:I

One of the following:

1. Regular Expression
2. String Comparison
1. File/Path Test

Figure 3: Syntax of the RewriteCond directive

4.2. APACHE MOD_REWRITE INTRODUCTION 151

For example, to send all requests from a particular IP range to a different server, you could use:

RewriteCond "% {REMOTE_ADDR}" ""10\.2\."
RewriteRule " (.%)" "http://intranet.example.com$1"

When more than one REWRITECOND is specified, they must all match for the REWRITERULE to be applied. For
example, to deny requests that contain the word "hack" in their query string, unless they also contain a cookie
containing the word "go", you could use:

RewriteCond "% {QUERY_STRING}" "hack"
RewriteCond "${HTTP_COOKIE}" !go
RewriteRule "." "-n [F]

Notice that the exclamation mark specifies a negative match, so the rule is only applied if the cookie does not contain
" go n .
Matches in the regular expressions contained in the REWRITECONDs can be used as part of the Substitution in the

REWRITERULE using the variables $1, %2, etc. For example, this will direct the request to a different directory
depending on the hostname used to access the site:

RewriteCond "% {HTTP_HOST}" " (.*)"
RewriteRule "/ (.x%)" "/sites/%1/$1"

If the request was for http://example.com/foo/bar, then $1 would contain example.com and $1 would
contain foo/bar.

Rewrite maps

The REWRITEMAP directive provides a way to call an external function, so to speak, to do your rewriting for you.
This is discussed in greater detail in the RewriteMap supplementary documentation (p. 166) .

Jhtaccess files

Rewriting is typically configured in the main server configuration setting (outside any <DIRECTORY>> section) or
inside <VIRTUALHOST> containers. This is the easiest way to do rewriting and is recommended. It is possible, how-
ever, to do rewriting inside <DIRECTORY> sections or . htaccess files (p. 249) at the expense of some additional
complexity. This technique is called per-directory rewrites.

The main difference with per-server rewrites is that the path prefix of the directory containing the . htaccess file is
stripped before matching in the REWRITERULE. In addition, the REWRITEBASE should be used to assure the request
is properly mapped.

152 CHAPTER 4. URL REWRITING GUIDE
4.3 Redirecting and Remapping with mod _rewrite

This document supplements the MOD_REWRITE reference documentation (p. 867) . It describes how you can use
MOD_REWRITE to redirect and remap request. This includes many examples of common uses of mod_rewrite, includ-
ing detailed descriptions of how each works.

m Note that many of these examples won’t work unchanged in your particular server configu-
ration, so it’s important that you understand them, rather than merely cutting and pasting the
examples into your configuration.

See also

e Module documentation (p. 867)

e mod_rewrite introduction (p. 147)
o Controlling access (p. 159)

e Virtual hosts (p. 162)

e Proxying (p. 165)

e Using RewriteMap (p. 166)

e Advanced techniques (p. 172)

e When not to use mod_rewrite (p. 175)

From Old to New (internal)

Description: Assume we have recently renamed the page foo.html to bar.html and now want to provide the
old URL for backward compatibility. However, we want that users of the old URL even not recognize that the
pages was renamed - that is, we don’t want the address to change in their browser.

Solution: We rewrite the old URL to the new one internally via the following rule:

RewriteEngine on
RewriteRule "~ /foo\.html$" "/bar.html" [PT]

Rewriting From Old to New (external)

Description: Assume again that we have recently renamed the page foo.html to bar.html and now want to
provide the old URL for backward compatibility. But this time we want that the users of the old URL get hinted
to the new one, i.e. their browsers Location field should change, too.

Solution: We force a HTTP redirect to the new URL which leads to a change of the browsers and thus the users view:

RewriteEngine on
RewriteRule "*/foo\.html$" "bar.html" [R]

Discussion In this example, as contrasted to the internal example above, we can simply use the Redirect directive.
mod _rewrite was used in that earlier example in order to hide the redirect from the client:

Redirect "/foo.html" "/bar.html"

4.3. REDIRECTING AND REMAPPING WITH MOD_REWRITE 153

Resource Moved to Another Server

Description: If a resource has moved to another server, you may wish to have URLs continue to work for a time on
the old server while people update their bookmarks.

Solution: You can use MOD_REWRITE to redirect these URLSs to the new server, but you might also consider using
the Redirect or RedirectMatch directive.

#With mod_rewrite
RewriteEngine on
RewriteRule "*/docs/ (.+)" "http://new.example.com/docs/S$1" [R,L]

#With RedirectMatch
RedirectMatch ""/docs/ (.*)" "http://new.example.com/docs/$1"

#With Redirect
Redirect "/docs/" "http://new.example.com/docs/"

From Static to Dynamic

Description: How can we transform a static page foo.html into a dynamic variant foo.cgi in a seamless way,
i.e. without notice by the browser/user.

Solution: We just rewrite the URL to the CGI-script and force the handler to be cgi-script so that it is exe-
cuted as a CGI program. This way a request to / “"quux/foo.html internally leads to the invocation of
/“quux/foo.cgi.

RewriteEngine on
RewriteBase "/ quux/"
RewriteRule "“foo\.html$" "foo.cgi" [H=cgi-script]

Backward Compatibility for file extension change

Description: How can we make URLs backward compatible (still existing virtually) after migrating
document . YYYY to document . XXXX, e.g. after translating a bunch of . html files to . php?

Solution: We rewrite the name to its basename and test for existence of the new extension. If it exists, we take that
name, else we rewrite the URL to its original state.

backward compatibility ruleset for
rewriting document.html to document.php
when and only when document.php exists
<Directory "/var/www/htdocs">

RewriteEngine on

RewriteBase "/var/www/htdocs"
RewriteCond "$1.php" -f
RewriteCond "S$1.html" '—f
RewriteRule " (.%) .htmlsS" "S1.php"

</Directory>

154 CHAPTER 4. URL REWRITING GUIDE

Discussion This example uses an often-overlooked feature of mod_rewrite, by taking advantage of the order of execu-
tion of the ruleset. In particular, mod_rewrite evaluates the left-hand-side of the RewriteRule before it evaluates
the RewriteCond directives. Consequently, $1 is already defined by the time the RewriteCond directives are eval-
uated. This allows us to test for the existence of the original (document .html) and target (document . php)
files using the same base filename.

This ruleset is designed to use in a per-directory context (In a <Directory> block or in a .htaccess file), so that
the —f checks are looking at the correct directory path. You may need to set a REWRITEBASE directive to
specify the directory base that you’re working in.

Canonical Hostnames

Description: The goal of this rule is to force the use of a particular hostname, in preference to other hostnames which
may be used to reach the same site. For example, if you wish to force the use of www.example.com instead of
example.com, you might use a variant of the following recipe.

Solution: The very best way to solve this doesn’t involve mod_rewrite at all, but rather uses the REDIRECT directive
placed in a virtual host for the non-canonical hostname(s).

<VirtualHost =%:80>
ServerName undesired.example.com
ServerAlias example.com notthis.example.com

Redirect "/" "http://www.example.com/"
</VirtualHost>

<VirtualHost %:80>
ServerName www.example.com
</VirtualHost>

You can alternatively accomplish this using the <IF> directive: (2.4 and later)

<If "${HTTP_HOST} !'= 'www.example.com’">
Redirect "/" "http://www.example.com/"
</If>

Or, for example, to redirect a portion of your site to HTTPS, you might do the following:

<If "%${SERVER_PROTOCOL} != "HTTPS’">
Redirect "/admin/" "https://www.example.com/admin/"
</If>

If, for whatever reason, you still want to use mod_rewrite - if, for example, you need this to work with a
larger set of RewriteRules - you might use one of the recipes below.

For sites running on a port other than 80:

RewriteCond "% {HTTP_HOST}" "1 "www\ .example\.com" [NC]

RewriteCond "% {HTTP_HOST}" mregn

RewriteCond "%{SERVER_PORT}" "!~80$"

RewriteRule "~ /2 (.%)" "http://www.example.com:${SERVER_PORT}/$1" [L,R,NE]

And for a site running on port 80

4.3. REDIRECTING AND REMAPPING WITH MOD_REWRITE 155
RewriteCond "% {HTTP_HOST}" "1 “www\ .example\.com" [NC]
RewriteCond "%${HTTP_HOST}" mrogn
RewriteRule """ /2 (.x)" "http://www.example.com/$1" [L,R,NE]

If you wanted to do this generically for all domain names - that is, if you want to redirect example.com to
www.example.com for all possible values of example.com, you could use the following recipe:

RewriteCond "% {HTTP_HOST}" "!“www\." [NC]
RewriteCond "${HTTP_HOST}" "!"g"
RewriteRule """ /2 (.x)" "http://www.%{HTTP_HOST}/$1" [L,R,NE]

These rulesets will work either in your main server configuration file, or in a . htaccess file placed in the

DOCUMENTROOT of the server.

Search for pages in more than one directory

Description: A particular resource might exist in one of several places, and we want to look in those places for the
resource when it is requested. Perhaps we’ve recently rearranged our directory structure, dividing content into

several locations.

Solution: The following ruleset searches in two directories to find the resource, and, if not finding it in either place,

will attempt to just serve it out of the location requested.
RewriteEngine on

first try to find it in dirl/...

...and if found stop and be happy:
RewriteCond "${DOCUMENT_ROOT}/dirl/%${REQUEST_URI}"
RewriteRule "" (.+)" "${DOCUMENT_ROOT}/dirl/$1" [L]

second try to find it in dir2/...

...and if found stop and be happy:

RewriteCond "${DOCUMENT_ROOT}/dir2/%{REQUEST_URI}"
RewriteRule "~ (.+)" "${DOCUMENT_ROOT}/dir2/$1" [L]

else go on for other Alias or ScriptAlias directives,
etc.

RewriteRule """ "

Redirecting to Geographically Distributed Servers

[PT]

Description: We have numerous mirrors of our website, and want to redirect people to the one that is located in the

country where they are located.

Solution: Looking at the hostname of the requesting client, we determine which country they are coming from. If we

can’t do a lookup on their IP address, we fall back to a default server.

We’ll use a REWRITEMAP directive to build a list of servers that we wish to use.

HostnameLookups on
RewriteEngine on

RewriteMap multiplex "txt:/path/to/map.mirrors"
RewriteCond "%{REMOTE_HOST}" "([a-z]+)S"

[NC]
RewriteRule "7/ (.x)S$" "$S{multiplex:%1|http://www.example.com/}S$1"

[R, L]

156 CHAPTER 4. URL REWRITING GUIDE

map.mirrors -- Multiplexing Map
de http://www.example.de/

uk http://www.example.uk/

com http://www.example.com/
##EOF ##

Discussion m This ruleset relies on HOSTNAMELOOKUPS being set on, which can be a significant perfor-
mance hit.

The REWRITECOND directive captures the last portion of the hostname of the requesting client - the country
code - and the following RewriteRule uses that value to look up the appropriate mirror host in the map file.

Canonical URLs

Description: On some webservers there is more than one URL for a resource. Usually there are canonical URLs
(which are be actually used and distributed) and those which are just shortcuts, internal ones, and so on. In-
dependent of which URL the user supplied with the request, they should finally see the canonical one in their
browser address bar.

Solution: We do an external HTTP redirect for all non-canonical URLSs to fix them in the location view of the Browser
and for all subsequent requests. In the example ruleset below we replace /puppies and /canines by the
canonical /dogs.

RewriteRule ""/(puppies|canines)/ (.x)" "/dogs/$2" [R]
Discussion: This should really be accomplished with Redirect or RedirectMatch directives:

RedirectMatch "/ (puppies|canines)/ (.x)" "/dogs/s$2"

Moved DocumentRoot

Description: Usually the DOCUMENTROOT of the webserver directly relates to the URL " /". But often this data
is not really of top-level priority. For example, you may wish for visitors, on first entering a site, to go to a
particular subdirectory /about /. This may be accomplished using the following ruleset:

Solution: We redirect the URL / to /about/:

RewriteEngine on
RewriteRule "t/$" "/about/" [R]

Note that this can also be handled using the REDIRECTMATCH directive:
RedirectMatch ""/$" "http://example.com/about/"

Note also that the example rewrites only the root URL. That is, it rewrites a request for
http://example.com/, but not a request for http://example.com/page.html. If you have in
fact changed your document root - that is, if all of your content is in fact in that subdirectory, it is greatly prefer-
able to simply change your DOCUMENTROOT directive, or move all of the content up one directory, rather than
rewriting URLs.

4.3. REDIRECTING AND REMAPPING WITH MOD_REWRITE 157

Fallback Resource

Description: You want a single resource (say, a certain file, like index.php) to handle all requests that come to a
particular directory, except those that should go to an existing resource such as an image, or a css file.

Solution: As of version 2.2.16, you should use the FALLBACKRESOURCE directive for this:

<Directory "/var/www/my_blog">
FallbackResource index.php
</Directory>

However, in earlier versions of Apache, or if your needs are more complicated than this, you can use a variation
of the following rewrite set to accomplish the same thing:

<Directory "/var/www/my_blog">
RewriteBase "/my_blog"

RewriteCond "/var/www/my_blog/${REQUEST_FILENAME}" !-f

RewriteCond "/var/www/my_blog/%${REQUEST_FILENAME}" !-d

RewriteRule """ "index.php" [PT]
</Directory>

If, on the other hand, you wish to pass the requested URI as a query string argument to index.php, you can
replace that RewriteRule with:

RewriteRule " (.*)" "index.php?$1" [PT,QSA]

Note that these rulesets can be used in a . htaccess file, as well as in a <Directory> block.

Rewrite query string

Description: You want to capture a particular value from a query string and either replace it or incorporate it into
another component of the URL.

Solutions: Many of the solutions in this section will all use the same condition, which leaves the matched value in the
%? backreference. %1 is the beginining of the query string (up to the key of intererest), and %3 is the remainder.
This condition is a bit complex for flexibility and to avoid double ’&&’ in the substitutions.

e This solution removes the matching key and value:

Remove mykey=?27?
RewriteCond "${QUERY_STRING}" " (.%(?:7|&))mykey=(["&]*)&?2(.x)&?2s"
RewriteRule " (.*)" "$17%1%3"

e This solution uses the captured value in the URL subsitution, discarding the rest of the original query by
appending a’?’:

Copy from query string to PATH_INFO
RewriteCond "${QUERY_STRING}" " (.%(?:7|&))mykey=(["&]*)&?2(.x)&?2s"
RewriteRule " (.*)" "$1/products/%2/2?" [PT]

e This solution checks the captured value in a subsequent condition:

158

CHAPTER 4. URL REWRITING GUIDE

Capture the value of mykey in the query string

RewriteCond "% {QUERY_STRING}" "(.*(?:A|&))mykey:([’\&]*)&?('*)&?$n
RewriteCond "%2" !=not-so-secret-value
RewriteRule " (.x)" o [F]

This solution shows the reverse of the previous ones, copying path components (perhaps PATH_INFO)
from the URL into the query string.

The desired URL might be /products/kitchen-sink, and the script expects
/path?products=kitchen-sink.
RewriteRule """ /?path/ (["/1+)/(["/1+)" "/path?$1=$2" [PT]

4.4. USING MOD_REWRITE TO CONTROL ACCESS 159
4.4 Using mod rewrite to control access

This document supplements the MOD_REWRITE reference documentation (p. 867) . It describes how you can use
MOD_REWRITE to control access to various resources, and other related techniques. This includes many examples of
common uses of mod_rewrite, including detailed descriptions of how each works.

m Note that many of these examples won’t work unchanged in your particular server configu-
ration, so it’s important that you understand them, rather than merely cutting and pasting the
examples into your configuration.

See also

e Module documentation (p. 867)

e mod_rewrite introduction (p. 147)

e Redirection and remapping (p. 152)
e Virtual hosts (p. 162)

e Proxying (p. 165)

e Using RewriteMap (p. 166)

e Advanced techniques (p. 172)

e When not to use mod_rewrite (p. 175)

Forbidding Image "Hotlinking"

Description: The following technique forbids the practice of other sites including your images inline in their pages.
This practice is often referred to as "hotlinking", and results in your bandwidth being used to serve content for
someone else’s site.

Solution: This technique relies on the value of the HTTP_REFERER variable, which is optional. As such, it’s possible
for some people to circumvent this limitation. However, most users will experience the failed request, which
should, over time, result in the image being removed from that other site.

There are several ways that you can handle this situation.

In this first example, we simply deny the request, if it didn’t initiate from a page on our site. For the purpose of
this example, we assume that our site is www .example.com.

RewriteCond "% {HTTP_REFERER}" "!I~g"
RewriteCond "${HTTP_REFERER}" "!www.example.com" [NC]
RewriteRule "\. (gif|Jjpglpng)s" "-" [F,NC]

In this second example, instead of failing the request, we display an alternate image instead.

RewriteCond "${HTTP_REFERER}" mrogn
RewriteCond "&{HTTP_REFERER}" "!www.example.com" [NC]
RewriteRule "\. (gif|Jpglpng)s$" "/images/go—-away.png" [R,NC]

In the third example, we redirect the request to an image on some other site.

RewriteCond "% {HTTP_REFERER}" mpogn
RewriteCond "${HTTP_REFERER}" "!www.example.comn" [NC]

RewriteRule "\. (gif|jpglpng)s$" "http://other.example.com/image.gif" [R,NC]

160 CHAPTER 4. URL REWRITING GUIDE

Of these techniques, the last two tend to be the most effective in getting people to stop hotlinking your images,
because they will simply not see the image that they expected to see.

Discussion: If all you wish to do is deny access to the resource, rather than redirecting that request elsewhere, this
can be accomplished without the use of mod_rewrite:

SetEnvIf Referer example\.com localreferer
<FilesMatch "\. (jpglpnglgif)s$">

Require env localreferer
</FilesMatch>

Blocking of Robots

Description: In this recipe, we discuss how to block persistent requests from a particular robot, or user agent.

The standard for robot exclusion defines a file, /robots.txt that specifies those portions of your website
where you wish to exclude robots. However, some robots do not honor these files.

Note that there are methods of accomplishing this which do not use mod_rewrite. Note also that any technique
that relies on the clients USER_AGENT string can be circumvented very easily, since that string can be changed.

Solution: We use a ruleset that specifies the directory to be protected, and the client USER_AGENT that identifies the
malicious or persistent robot.

In this example, we are blocking a robot called NameOfBadRobot from a location /secret/files. You
may also specify an IP address range, if you are trying to block that user agent only from the particular source.

RewriteCond "${HTTP_USER_AGENT}" "“NameOfBadRobot"
RewriteCond "%${REMOTE_ADDR}" "=123\.45\.67\.[8-9]1"
RewriteRule ""/secret/files/" n_m [F]

Discussion: Rather than using mod_rewrite for this, you can accomplish the same end using alternate means, as
illustrated here:

SetEnvIfNoCase User-Agent “NameOfBadRobot goaway
<Location "/secret/files">
<RequireAll>
Require all granted
Require not env goaway
</RequireAll>
</Location>

As noted above, this technique is trivial to circumvent, by simply modifying the USER_AGENT request header.
If you are experiencing a sustained attack, you should consider blocking it at a higher level, such as at your
firewall.

Denying Hosts in a Blacklist

Description: We wish to maintain a blacklist of hosts, rather like host s . deny, and have those hosts blocked from
accessing our server.

Solution: RewriteEngine on

RewriteMap hosts—-deny "txt:/path/to/hosts.deny"
RewriteCond "S{hosts—-deny:%${REMOTE_ADDR} |[NOT-FOUND}" "!=NOT-FOUND" [OR]
RewriteCond "S${hosts—deny:%${REMOTE_HOST} |[NOT-FOUND}" "!=NOT-FOUND"

RewriteRule nen n_mn [Fl

4.4. USING MOD_REWRITE TO CONTROL ACCESS 161

##

hosts.deny

#4

ATTENTION! This is a map, not a list, even when we treat it as
such.

mod_.rewrite parses it for key/value pairs, so at least a
dummy value "-" must be present for each entry.

##

193.102.180.41 -

bsdtil.sdm.de -

192.76.162.40 -

Discussion: The second RewriteCond assumes that you have HostNameLookups turned on, so that client IP addresses
will be resolved. If that’s not the case, you should drop the second RewriteCond, and drop the [OR] flag from
the first RewriteCond.

Referer-based Deflector

Description: Redirect requests based on the Referer from which the request came, with different targets per Referer.

Solution: The following ruleset uses a map file to associate each Referer with a redirection target.

RewriteMap deflector "txt:/path/to/deflector.map"

RewriteCond "${HTTP_REFERER}" I=nn

RewriteCond "${deflector:%{HTTP_REFERER}}" =-

RewriteRule """ "${HTTP_REFERER}" [R, L]

RewriteCond "${HTTP_REFERER}" I=nn

RewriteCond "S${deflector:%{HTTP_REFERER} |NOT-FOUND}" "!=NOT-FOUND"
RewriteRule "°" "S{deflector:%${HTTP_REFERER}}" [R,L]

The map file lists redirection targets for each referer, or, if we just wish to redirect back to where they came

from, a "-" is placed in the map:
##

deflector.map

##

http://badguys.example.com/bad/index.html -
http://badguys.example.com/bad/index2.html —
http://badguys.example.com/bad/index3.html http://somewhere.example.com/

162 CHAPTER 4. URL REWRITING GUIDE
4.5 Dynamic mass virtual hosts with mod_rewrite

This document supplements the MOD_REWRITE reference documentation (p. 867) . It describes how you can use
MOD_REWRITE to create dynamically configured virtual hosts.

m mod_rewrite is usually not the best way to configure virtual hosts. You should first consider the
alternatives (p. 130) before resorting to mod_rewrite. See also the "how to avoid mod_rewrite
(p. 175) document.

See also

e Module documentation (p. 867)

e mod_rewrite introduction (p. 147)

e Redirection and remapping (p. 152)
e Controlling access (p. 159)

e Proxying (p. 165)

e RewriteMap (p. 166)

e Advanced techniques (p. 172)

e When not to use mod_rewrite (p. 175)

Virtual Hosts For Arbitrary Hostnames

Description: We want to automatically create a virtual host for every hostname which resolves in our domain, without
having to create new VirtualHost sections.

In this recipe, we assume that we’ll be using the hostname SITE.example.com for each user, and serve
their content out of /home/SITE/www. However, we want www .example.com to be ommitted from this

mapping.

Solution: RewriteEngine on
RewriteMap lowercase int:tolower
RewriteCond ${HTTP_HOST} ! “www\.

RewriteCond S{lowercase:%${HTTP_HOST}}
RewriteRule T(.*) /home/%1/www$1l

([7.1+4)\.example\ .com$

Discussion m You will need to take care of the DNS resolution - Apache does not handle name resolution.
You’ll need either to create CNAME records for each hostname, or a DNS wildcard record.
Creating DNS records is beyond the scope of this document.

The internal t olower RewriteMap directive is used to ensure that the hostnames being used are all lowercase,
so that there is no ambiguity in the directory structure which must be created.

Parentheses used in a REWRITECOND are captured into the backreferences $1, %2, etc, while parentheses used
in REWRITERULE are captured into the backreferences $1, $2, etc.

The first RewriteCond checks to see if the hostname starts with www ., and if it does, the rewriting is skipped.

As with many techniques discussed in this document, mod_rewrite really isn’t the best way to accomplish this
task. You should, instead, consider using MOD_VHOST_ALIAS instead, as it will much more gracefully handle
anything beyond serving static files, such as any dynamic content, and Alias resolution.

4.5. DYNAMIC MASS VIRTUAL HOSTS WITH MOD_REWRITE 163

Dynamic Virtual Hosts Using MOD_REWRITE

This extract from httpd.conf does the same thing as the first example. The first half is very similar to the corre-
sponding part above, except for some changes, required for backward compatibility and to make the mod_rewrite
part work properly; the second half configures mod_rewrite to do the actual work.

Because mod_rewrite runs before other URI translation modules (e.g., mod_alias), mod_-rewrite must be
told to explicitly ignore any URLs that would have been handled by those modules. And, because these rules would
otherwise bypass any ScriptAlias directives, we must have mod_rewrite explicitly enact those mappings.

get the server name from the Host: header
UseCanonicalName Off

splittable logs
LogFormat "${Host}i %h %1 %u %t \"%$r\" %s %b" vcommon
CustomLog "logs/access_log" vcommon

<Directory "/www/hosts">
ExecCGI is needed here because we can’t force
CGI execution in the way that ScriptAlias does
Options FollowSymLinks ExecCGI

</Directory>

RewriteEngine On

a ServerName derived from a Host: header may be any case at all
RewriteMap lowercase "int:tolower"

deal with normal documents first:
allow Alias /icons/ to work - repeat for other aliases

RewriteCond "${REQUEST_URI}"™ "!“/icons/"

allow CGIs to work

RewriteCond "${REQUEST_URI}" "!“/cgi-bin/"

do the magic

RewriteRule "“/(.%)S$" "/www/hosts/${lowercase:%${SERVER_NAME} }/docs/S$1"

and now deal with CGIs - we have to force a handler

RewriteCond "${REQUEST_URI}" "“/cgi-bin/"

RewriteRule "/ (.x)S" "/www/hosts/${lowercase:%{SERVER_NAME}}/cgi-bin/$1" [H=cgi-

Using a Separate Virtual Host Configuration File

This arrangement uses more advanced MOD_REWRITE features to work out the translation from virtual host to docu-
ment root, from a separate configuration file. This provides more flexibility, but requires more complicated configura-
tion.

The vhost .map file should look something like this:

customer—-1.example.com /www/customers/1l
customer-2.example.com /www/customers/2

#

customer-N.example.com /www/customers/N

The httpd. conf should contain the following:

164 CHAPTER 4. URL REWRITING GUIDE

RewriteEngine on
RewriteMap lowercase "int:tolower"

define the map file
RewriteMap vhost "txt:/www/conf/vhost .map"

deal with aliases as above

RewriteCond "${REQUEST_URI}" "1*/icons/"
RewriteCond "%{REQUEST_URI}" "1*/cgi-bin/"
RewriteCond "${lowercase:%{SERVER_NAME}}" "~ (.+)$"

this does the file-based remap

RewriteCond "${vhost:%1}" "t/ x)S"
RewriteRule "/ (.x)S$" "$1/docs/$1"
RewriteCond "%{REQUEST_URI}" "*/cgi-bin/"
RewriteCond "S${lowercase:%{SERVER_NAME}}" "“(.+)S$"
RewriteCond "${vhost:%1}" "/ ax) ST

RewriteRule "/ (.x)s$" "$1/cgi-bin/$1" [H=cgi-script]

4.6. USING MOD_REWRITE FOR PROXYING 165
4.6 Using mod rewrite for Proxying

This document supplements the MOD_REWRITE reference documentation (p. 867) . It describes how to use the
RewriteRule’s [P] flag to proxy content to another server. A number of recipes are provided that describe common
scenarios.

See also

e Module documentation (p. 867)

e mod_rewrite introduction (p. 147)

e Redirection and remapping (p. 152)
e Controlling access (p. 159)

e Virtual hosts (p. 162)

e Using RewriteMap (p. 166)

e Advanced techniques (p. 172)

e When not to use mod_rewrite (p. 175)

Proxying Content with mod_rewrite

Description: mod_rewrite provides the [P] flag, which allows URLs to be passed, via mod_proxy, to another server.
Two examples are given here. In one example, a URL is passed directly to another server, and served as though
it were a local URL. In the other example, we proxy missing content to a back-end server.

Solution: To simply map a URL to another server, we use the [P] flag, as follows:

RewriteEngine on

RewriteBase "/products/"

RewriteRule "“widget/ (.*)S$" "http://product.example.com/widget/$1" [P]
ProxyPassReverse "/products/widget/" "http://product.example.com/widget/"

In the second example, we proxy the request only if we can’t find the resource locally. This can be very useful
when you’re migrating from one server to another, and you’re not sure if all the content has been migrated yet.

RewriteCond "${REQUEST_FILENAME}" ' -f
RewriteCond "${REQUEST_FILENAME}" I-d
RewriteRule "~/ (.x)" "http://old.example.com/$1" [P]

ProxyPassReverse "/" "http://old.example.com/"

Discussion: In each case, we add a PROXYPASSREVERSE directive to ensure that any redirects issued by the backend
are correctly passed on to the client.

Consider using either PROXYPASS or PROXYPASSMATCH whenever possible in preference to mod_rewrite.

166 CHAPTER 4. URL REWRITING GUIDE
4.7 Using RewriteMap

This document supplements the MOD_REWRITE reference documentation (p. 867) . It describes the use of the
REWRITEMAP directive, and provides examples of each of the various REWRITEMAP types.

m Note that many of these examples won’t work unchanged in your particular server configu-
ration, so it’s important that you understand them, rather than merely cutting and pasting the
examples into your configuration.

See also

e Module documentation (p. 867)

e mod_rewrite introduction (p. 147)

e Redirection and remapping (p. 152)
e Controlling access (p. 159)

e Virtual hosts (p. 162)

e Proxying (p. 165)

e Advanced techniques (p. 172)

e When not to use mod_rewrite (p. 175)

Introduction

The REWRITEMAP directive defines an external function which can be called in the context of REWRITERULE or
REWRITECOND directives to perform rewriting that is too complicated, or too specialized to be performed just by
regular expressions. The source of this lookup can be any of the types listed in the sections below, and enumerated in
the REWRITEMAP reference documentation.

The syntax of the REWRITEMAP directive is as follows:
RewriteMap MapName MapType:MapSource

The MapName is an arbitray name that you assign to the map, and which you will use in directives later on. Arguments
are passed to the map via the following syntax:

${ MapName : LookupKey }
${ MapName : LookupKey | DefaultValue }

When such a construct occurs, the map MapName is consulted and the key LookupKey is looked-up. If the key is found,
the map-function construct is substituted by SubstValue. If the key is not found then it is substituted by DefaultValue
or by the empty string if no DefaultValue was specified.

For example, you can define a REWRITEMAP as:

RewriteMap examplemap "txt:/path/to/file/map.txt"
You would then be able to use this map in a REWRITERULE as follows:
RewriteRule """ /ex/ (.x)" "S{examplemap:S$1}"

A default value can be specified in the event that nothing is found in the map:

4.7. USING REWRITEMAP 167

RewriteRule """ /ex/ (.x)" "${examplemap:$1|/not_found.html}"

:/>Per-directory and .htaccess context

The REWRITEMAP directive may not be used in <DIRECTORY> sections or .htaccess
files. You must declare the map in server or virtualhost context. You may use the map, once
created, in your REWRITERULE and REWRITECOND directives in those scopes. You just can’t
declare it in those scopes.

The sections that follow describe the various MapTypes that may be used, and give examples of each.

int: Internal Function

When a MapType of int is used, the MapSource is one of the available internal REWRITEMAP functions. Module
authors can provide additional internal functions by registering them with the ap_-register_rewrite mapfunc
API. The functions that are provided by default are:

e toupper:
Converts the key to all upper case.

e tolower:
Converts the key to all lower case.

e escape:
Translates special characters in the key to hex-encodings.

e unescape:
Translates hex-encodings in the key back to special characters.

To use one of these functions, create a REWRITEMAP referencing the int function, and then use that in your
REWRITERULE:

Redirect a URI to an all-lowercase version of itself

RewriteMap lc int:tolower
RewriteRule " (.x)" "${lc:$1}1" [R]

:/>Please note that the example offered here is for illustration purposes only, and is not a recom-
mendation. If you want to make URLSs case-insensitive, consider using MOD_SPELING instead.

txt: Plain text maps

When a MapType of txt is used, the MapSource is a filesystem path to a plain-text mapping file, containing one
space-separated key/value pair per line. Optionally, a line may contain a comment, starting with a *#° character.

A valid text rewrite map file will have the following syntax:

Comment line
MatchingKey SubstValue
MatchingKey SubstValue # comment

168 CHAPTER 4. URL REWRITING GUIDE

When the REWRITEMAP is invoked the argument is looked for in the first argument of a line, and, if found, the
substitution value is returned.

For example, we can use a mapfile to translate product names to product IDs for easier-to-remember URLS, using the
following recipe:

Product to ID configuration

RewriteMap product2id "txt:/etc/apache2/productmap.txt"
RewriteRule """ /product/ (.*)" "/prods.php?id=${product2id:$1|NOTFOUND}" [PT]

We assume here that the prods . php script knows what to do when it received an argument of 1 d=NOTFOUND when
a product is not found in the lookup map.

The file /etc/apache2/productmap.txt then contains the following:

Product to ID map

##

productmap.txt - Product to ID map file
##

television 993

stereo 198

fishingrod 043

basketball 418

telephone 328

Thus, when http://example.com/product/television is requested, the REWRITERULE is applied, and
the request is internally mapped to /prods.php?id=993.

:/)Note: .htaccess files

The example given is crafted to be used in server or virtualhost scope. If you’re planning to
use thisin a . htaccess file, you’ll need to remove the leading slash from the rewrite pattern
in order for it to match anything:

RewriteRule "“product/ (.x)" "/prods.php?id=${product2id:$1|NOTFOUND}" [PT]

:/> Cached lookups

The looked-up keys are cached by httpd until the mt ime (modified time) of the mapfile
changes, or the httpd server is restarted. This ensures better performance on maps that are
called by many requests.

rnd: Randomized Plain Text

When a MapType of rnd is used, the MapSource is a filesystem path to a plain-text mapping file, each line of which
contains a key, and one or more values separated by |. One of these values will be chosen at random if the key is
matched.

For example, you can use the following map file and directives to provide a random load balancing between several
back-end servers, via a reverse-proxy. Images are sent to one of the servers in the ’static’ pool, while everything else
is sent to one of the ’dynamic’ pool.

4.7. USING REWRITEMAP 169

Rewrite map file

##

map.txt -- rewriting map
##

static wwwl |www2 | www3 | wwwd
dynamic wwwb |www6

Configuration directives
RewriteMap servers "rnd:/path/to/file/map.txt"

RewriteRule """/ (.x\. (pnglgif|jpg))" "http://S${servers:static}/$1" [NC,P,L]
RewriteRule """/ (.%)" "http://${servers:dynamic}/$1" [P, L]

So, when an image is requested and the first of these rules is matched, REWRITEMAP looks up the string static in
the map file, which returns one of the specified hostnames at random, which is then used in the REWRITERULE target.

If you wanted to have one of the servers more likely to be chosen (for example, if one of the server has more memory
than the others, and so can handle more requests) simply list it more times in the map file.

static wwwl|wwwl|www2 |www3 |wwwé

dbm: DBM Hash File

When a MapType of dbm is used, the MapSource is a filesystem path to a DBM database file containing key/value
pairs to be used in the mapping. This works exactly the same way as the t xt map, but is much faster, because a DBM
is indexed, whereas a text file is not. This allows more rapid access to the desired key.

You may optionally specify a particular dbm type:
RewriteMap examplemap "dbm=sdbm:/etc/apache/mapfile.dbm"

The type can be sdbm, gdbm, ndbm or db. However, it is recommended that you just use the httxt2dbm (p. 328)
utility that is provided with Apache HTTP Server, as it will use the correct DBM library, matching the one that was
used when httpd itself was built.

To create a dbm file, first create a text map file as described in the txt section. Then run ht t xt 2dbm:

$ httxt2dbm —-i mapfile.txt -o mapfile.map

You can then reference the resulting file in your REWRITEMAP directive:

RewriteMap mapname "dbm:/etc/apache/mapfile.map"

:i Note that with some dbm types, more than one file is generated, with a common base name. For
example, you may have two files named mapfile.map.dir and mapfiile.map.pag.
This is normal, and you need only use the base name mapfile.map in your REWRITEMAP
directive.

:/> Cached lookups

The looked-up keys are cached by httpd until the mt ime (modified time) of the mapfile
changes, or the httpd server is restarted. This ensures better performance on maps that are
called by many requests.

170 CHAPTER 4. URL REWRITING GUIDE

prg: External Rewriting Program

When a MapType of prg is used, the MapSource is a filesystem path to an executable program which will providing
the mapping behavior. This can be a compiled binary file, or a program in an interpreted language such as Perl or
Python.

This program is started once, when the Apache HTTP Server is started, and then communicates with the rewriting
engine via STDIN and STDOUT. That is, for each map function lookup, it expects one argument via STDIN, and
should return one new-line terminated response string on STDOUT. If there is no corresponding lookup value, the map
program should return the four-character string "NULL" to indicate this.

External rewriting programs are not started if they’re defined in a context that does not have REWRITEENGINE set to
on.

By default, external rewriting programs are run as the user:group who started httpd. This can be changed on UNIX
systems by passing user name and group name as third argument to REWRITEMAP in the username : groupname
format.

This feature utilizes the rewrite-map mutex, which is required for reliable communication with the program. The
mutex mechanism and lock file can be configured with the MUTEX directive.

A simple example is shown here which will replace all dashes with underscores in a request URL

Rewrite configuration

RewriteMap d2u "prg:/www/bin/dash2under.programlisting” apache:apache
RewriteRule "-" "${d2u:%${REQUEST_URI}}"

dash2under.pl

#!/usr/bin/perl

$| = 1; # Turn off I/0 buffering

while (<STDIN>) {
s/-/_/g; # Replace dashes with underscores
print $_;

i Caution!

e Keep your rewrite map program as simple as possible. If the program hangs, it will cause
httpd to wait indefinitely for a response from the map, which will, in turn, cause httpd to
stop responding to requests.

e Be sure to turn off buffering in your program. In Perl this is done by the second line in
the example script: $| = 1; This will of course vary in other languages. Buffered I/O
will cause httpd to wait for the output, and so it will hang.

e Remember that there is only one copy of the program, started at server startup. All re-
quests will need to go through this one bottleneck. This can cause significant slowdowns
if many requests must go through this process, or if the script itself is very slow.

dbd or fastdbd: SQL Query

When a MapType of dbd or fastdbd is used, the MapSource is a SQL SELECT statement that takes a single
argument and returns a single value.

4.7. USING REWRITEMAP 171

MOD_DBD will need to be configured to point at the right database for this statement to be executed.

There are two forms of this MapType. Using a MapType of dbd causes the query to be executed with each map
request, while using fastdbd caches the database lookups internally. So, while fastdbd is more efficient, and
therefore faster, it won’t pick up on changes to the database until the server is restarted.

If a query returns more than one row, a random row from the result set is used.

Example

RewriteMap myquery "fastdbd:SELECT destination FROM rewrite WHERE source = %s"

Summary

The REWRITEMAP directive can occur more than once. For each mapping-function use one REWRITEMAP directive
to declare its rewriting mapfile.

While you cannot declare a map in per-directory context (. htaccess files or <DIRECTORY > blocks) it is possible
to use this map in per-directory context.

172 CHAPTER 4. URL REWRITING GUIDE
4.8 Advanced Techniques with mod_rewrite

This document supplements the MOD_REWRITE reference documentation (p. 867) . It provides a few advanced tech-
niques using mod_rewrite.

m Note that many of these examples won’t work unchanged in your particular server configu-
ration, so it’s important that you understand them, rather than merely cutting and pasting the
examples into your configuration.

See also

e Module documentation (p. 867)

e mod_rewrite introduction (p. 147)

e Redirection and remapping (p. 152)
e Controlling access (p. 159)

e Virtual hosts (p. 162)

e Proxying (p. 165)

e Using RewriteMap (p. 166)

e When not to use mod_rewrite (p. 175)

URL-based sharding across multiple backends

Description: A common technique for distributing the burden of server load or storage space is called "sharding".
When using this method, a front-end server will use the url to consistently "shard" users or objects to separate
backend servers.

Solution: A mapping is maintained, from users to target servers, in external map files. They look like:

userl physical_host_of_userl
user2 physical_host_of_user2

We put this into amap .users-to-hosts file. The aim is to map;

/u/userl/anypath

to

http://physical_host_of_userl/u/user/anypath

thus every URL path need not be valid on every backend physical host. The following ruleset does this for us
with the help of the map files assuming that serverO is a default server which will be used if a user has no entry
in the map:

RewriteEngine on
RewriteMap users—-to-hosts "txt:/path/to/map.users—-to-hosts"

RewriteRule "/u/([7/1+4) /2?2 (.x)" "http://S{users-to-hosts:$1|server0}/u/s$1/$2"

See the REWRITEMAP documentation for more discussion of the syntax of this directive.

4.8. ADVANCED TECHNIQUES WITH MOD_REWRITE 173

On-the-fly Content-Regeneration

Description: We wish to dynamically generate content, but store it statically once it is generated. This rule will check
for the existence of the static file, and if it’s not there, generate it. The static files can be removed periodically,
if desired (say, via cron) and will be regenerated on demand.

Solution: This is done via the following ruleset:

This example is valid in per-directory context only
RewriteCond "${REQUEST_URI}" '-U
RewriteRule "~ (.+)\.htmls$" "/regenerate_page.cgi" [PT, L]

The —U operator determines whether the test string (in this case, REQUEST _URT) is a valid URL. It does this
via a subrequest. In the event that this subrequest fails - that is, the requested resource doesn’t exist - this rule
invokes the CGI program /regenerate_page.cgi, which generates the requested resource and saves it into
the document directory, so that the next time it is requested, a static copy can be served.

In this way, documents that are infrequently updated can be served in static form. if documents need to be
refreshed, they can be deleted from the document directory, and they will then be regenerated the next time they
are requested.

Load Balancing
Description: We wish to randomly distribute load across several servers using mod_rewrite.

Solution: We’ll use REWRITEMAP and a list of servers to accomplish this.

RewriteEngine on
RewriteMap 1b "rnd:/path/to/serverlist.txt"
RewriteRule """/ (.*)" "http://${lb:servers}/$1" [P, L]

serverlist.txt will contain a list of the servers:

serverlist.txt

servers one.example.com|two.example.com|three.example.com

If you want one particular server to get more of the load than the others, add it more times to the list.

Discussion Apache comes with a load-balancing module - MOD_PROXY_BALANCER - which is far more flexible and
featureful than anything you can cobble together using mod_rewrite.

Structured Userdirs

Description: Some sites with thousands of users use a structured homedir layout, i.e. each home-
dir is in a subdirectory which begins (for instance) with the first character of the username. So,
/" larry/anypath is /home/l/larry/public_html/anypath while /“waldo/anypath is
/home/w/waldo/public_html/anypath.

Solution: We use the following ruleset to expand the tilde URLs into the above layout.

RewriteEngine on
RewriteRule "/7(([a-z]) [a=z0-9]+) (.*)" "/home/$2/$1/public_html$3"

174 CHAPTER 4. URL REWRITING GUIDE

Redirecting Anchors

Description: By default, redirecting to an HTML anchor doesn’t work, because mod_rewrite escapes the # character,
turning it into $2 3. This, in turn, breaks the redirection.

Solution: Use the [NE] flag on the RewriteRule. NE stands for No Escape.

Discussion: This technique will of course also work with other special characters that mod_rewrite, by default, URL-
encodes.
Time-Dependent Rewriting

Description: We wish to use mod_rewrite to serve different content based on the time of day.

Solution: There are a lot of variables named TIME_xxx for rewrite conditions. In conjunction with the special
lexicographic comparison patterns <STRING, >STRING and =STRING we can do time-dependent redirects:

RewriteEngine on

RewriteCond "${TIME_HOUR}%{TIME_MIN}" >0700

RewriteCond "${TIME_HOUR}%{TIME_MIN}" <1900

RewriteRule "“foo\.htmls$" "foo.day.html" [L]
RewriteRule "“foo\.htmls" "foo.night.html"

This provides the content of foo.day.html under the URL foo.html from 07:01-18:59 and at the
remaining time the contents of foo.night .html.

m MOD_CACHE, intermediate proxies and browsers may each cache responses and cause the ei-
ther page to be shown outside of the time-window configured. MOD_EXPIRES may be used to
control this effect. You are, of course, much better off simply serving the content dynamically,
and customizing it based on the time of day.

Set Environment Variables Based On URL Parts
Description: At time, we want to maintain some kind of status when we perform a rewrite. For example, you want

to make a note that you’ve done that rewrite, so that you can check later to see if a request can via that rewrite.
One way to do this is by setting an environment variable.

Solution: Use the [E] flag to set an environment variable.

RewriteEngine on
RewriteRule "~ /horse/ (.x)" "/pony/$1" [E=rewritten:1]

Later in your ruleset you might check for this environment variable using a RewriteCond:
RewriteCond "%${ENV:rewritten}" =1

Note that environment variables do not survive an external redirect. You might consider using the [CO] flag to
set a cookie.

4.9. WHEN NOT TO USE MOD_REWRITE 175
4.9 When not to use mod _rewrite

This document supplements the MOD_REWRITE reference documentation (p. 867) . It describes perhaps one of the
most important concepts about MOD_REWRITE - namely, when to avoid using it.

MOD_REWRITE should be considered a last resort, when other alternatives are found wanting. Using it when there are
simpler alternatives leads to configurations which are confusing, fragile, and hard to maintain. Understanding what
other alternatives are available is a very important step towards MOD_REWRITE mastery.

Note that many of these examples won’t work unchanged in your particular server configuration, so it’s important that
you understand them, rather than merely cutting and pasting the examples into your configuration.

The most common situation in which MOD_REWRITE is the right tool is when the very best solution requires access
to the server configuration files, and you don’t have that access. Some configuration directives are only available in
the server configuration file. So if you are in a hosting situation where you only have .htaccess files to work with, you
may need to resort to MOD_REWRITE.

See also

e Module documentation (p. 867)

e mod_rewrite introduction (p. 147)

e Redirection and remapping (p. 152)
e Controlling access (p. 159)

e Virtual hosts (p. 162)

e Proxying (p. 165)

e Using RewriteMap (p. 166)

e Advanced techniques (p. 172)

Simple Redirection

MOD_ALIAS provides the REDIRECT and REDIRECTMATCH directives, which provide a means to redirect one URL to
another. This kind of simple redirection of one URL, or a class of URLSs, to somewhere else, should be accomplished
using these directives rather than REWRITERULE. RedirectMatch allows you to include a regular expression in
your redirection criteria, providing many of the benefits of using RewriteRule.

A common use for RewriteRule is to redirect an entire class of URLs. For example, all URLs in the /one directory
must be redirected to http://one.example.com/, or perhaps all http requests must be redirected to https.

These situations are better handled by the Redirect directive. Remember that Redirect preserves path informa-
tion. That is to say, a redirect for a URL /one will also redirect all URLSs under that, such as /one/two.html and
/one/three/four.html.

To redirect URLs under /one to http://one.example.com, do the following:
Redirect "/one/" "http://one.example.com/"

To redirect one hostname to another, for example example . com to www . example . com, see the Canonical Host-
names (p. 152) recipe.

To redirect ht tp URLs to https, do the following:

<VirtualHost %:80>
ServerName www.example.com
Redirect "/" "https://www.example.com/"

176 CHAPTER 4. URL REWRITING GUIDE

</VirtualHost>

<VirtualHost =x:443>

ServerName www.example.com

... SSL configuration goes here
</VirtualHost>

The use of RewriteRule to perform this task may be appropriate if there are other RewriteRule directives in
the same scope. This is because, when there are Redirect and RewriteRule directives in the same scope, the
RewriteRule directives will run first, regardless of the order of appearance in the configuration file.

In the case of the http-to-https redirection, the use of RewriteRule would be appropriate if you don’t have access
to the main server configuration file, and are obliged to perform this task in a . htaccess file instead.

URL Aliasing

The ALIAS directive provides mapping from a URI to a directory - usually a directory outside of your DOCUMEN-
TROOT. Although it is possible to perform this mapping with MOD_REWRITE, ALIAS is the preferred method, for
reasons of simplicity and performance.

Using Alias

Alias "/cats" "/var/www/virtualhosts/felines/htdocs"

The use of MOD_REWRITE to perform this mapping may be appropriate when you do not have access to the server
configuration files. Alias may only be used in server or virtualhost context, and notin a . htaccess file.

Symbolic links would be another way to accomplish the same thing, if you have Options FollowSymLinks
enabled on your server.

Virtual Hosting

Although it is possible to handle virtual hosts with mod_rewrite (p. 162) , it is seldom the right way. Creating individual
<VIRTUALHOST> blocks is almost always the right way to go. In the event that you have an enormous number of
virtual hosts, consider using MOD_VHOST_ALIAS to create these hosts automatically.

Modules such as MOD_MACRO are also useful for creating a large number of virtual hosts dynamically.

Using MOD_REWRITE for vitualhost creation may be appropriate if you are using a hosting service that does not pro-
vide you access to the server configuration files, and you are therefore restricted to configuration using . htaccess
files.

See the virtual hosts with mod_rewrite (p. 162) document for more details on how you might accomplish this if it still
seems like the right approach.

Simple Proxying
REWRITERULE provides the [P] (p. 178) flag to pass rewritten URIs through MOD_PROXY.
RewriteRule ""/?images(.*)" "http://imageserver.local/images$1l" [P]

However, in many cases, when there is no actual pattern matching needed, as in the example shown above, the PROX-
YPASS directive is a better choice. The example here could be rendered as:

4.9. WHEN NOT TO USE MOD_REWRITE 177
ProxyPass "/images/" "http://imageserver.local/images/"

Note that whether you use REWRITERULE or PROXYPASS, you’ll still need to use the PROXYPASSREVERSE directive
to catch redirects issued from the back-end server:

ProxyPassReverse "/images/" "http://imageserver.local/images/"

You may need to use RewriteRule instead when there are other RewriteRules in effect in the same scope, as a
RewriteRule will usually take effect before a ProxyPass, and so may preempt what you’re trying to accomplish.

Environment Variable Testing

MOD_REWRITE is frequently used to take a particular action based on the presence or absence of a particular environ-
ment variable or request header. This can be done more efficiently using the <IF>.

Consider, for example, the common scenario where REWRITERULE is used to enforce a canonical hostname, such as
www . example.com instead of example.com. This can be done using the <IF> directive, as shown here:

<If "req('Host’) != "www.example.com’">
Redirect "/" "http://www.example.com/"
</If>

This technique can be used to take actions based on any request header, response header, or environment variable,
replacing MOD_REWRITE in many common scenarios.

See especially the expression evaluation documentation (p. 99) for a overview of what types of expressions you can
use in <IF> sections, and in certain other directives.

178 CHAPTER 4. URL REWRITING GUIDE

4.10 RewriteRule Flags

This document discusses the flags which are available to the REWRITERULE directive, providing detailed explanations
and examples.

See also

e Module documentation (p. 867)

e mod_rewrite introduction (p. 147)

e Redirection and remapping (p. 152)
e Controlling access (p. 159)

e Virtual hosts (p. 162)

e Proxying (p. 165)

e Using RewriteMap (p. 166)

e Advanced techniques (p. 172)

e When not to use mod_rewrite (p. 175)

Introduction

A REWRITERULE can have its behavior modified by one or more flags. Flags are included in square brackets at the
end of the rule, and multiple flags are separated by commas.

RewriteRule pattern target [Flagl,Flag2,Flag3]

Each flag (with a few exceptions) has a short form, such as CO, as well as a longer form, such as cookie. While it is
most common to use the short form, it is recommended that you familiarize yourself with the long form, so that you
remember what each flag is supposed to do. Some flags take one or more arguments. Flags are not case sensitive.

Flags that alter metadata associated with the request (T=, H=, E=) have no affect in per-directory and htaccess context,
when a substitution (other than ’-’) is performed during the same round of rewrite processing.

Presented here are each of the available flags, along with an example of how you might use them.

B (escape backreferences)

The [B] flag instructs REWRITERULE to escape non-alphanumeric characters before applying the transformation.

In 2.4.10 and later, you can limit the escaping to specific characters in backreferences by listing them: [B=#7?;].
Note: The space character can be used in the list of characters to escape, but it cannot be the last character in the list.

mod_rewrite has to unescape URLs before mapping them, so backreferences are unescaped at the time they are
applied. Using the B flag, non-alphanumeric characters in backreferences will be escaped. For example, consider the
rule:

RewriteRule "“search/ (.*)S$" "/search.php?term=$1"

Given a search term of 'x & y/z’, a browser will encode it as 'x%20%26%20y%?2Fz’, making the request
“search/x%20%26%20y%2Fz’. Without the B flag, this rewrite rule will map to ’search.php?term=x & y/z’, which
isn’t a valid URL, and so would be encoded as search.php?term=x%$20&y%2Fz=, which is not what was in-
tended.

4.10. REWRITERULE FLAGS 179

With the B flag set on this same rule, the parameters are re-encoded before being passed on to the output URL, resulting
in a correct mapping to /search.php?term=x%20%26%20y%$2Fz.

Note that you may also need to set ALLOWENCODEDSLASHES to On to get this particular example to work, as httpd
does not allow encoded slashes in URLSs, and returns a 404 if it sees one.

This escaping is particularly necessary in a proxy situation, when the backend may break if presented with an un-
escaped URL.

An alternative to this flag is using a REWRITECOND to capture against %{THE_REQUEST} which will capture strings
in the encoded form.

BNP—backrefnoplus (don’t escape space to +)

The [BNP] flag instructs REWRITERULE to escape the space character in a backreference to %20 rather than *+’.
Useful when the backreference will be used in the path component rather than the query string.

C—chain

The [C] or [chain] flag indicates that the REWRITERULE is chained to the next rule. That is, if the rule matches, then
it is processed as usual and control moves on to the next rule. However, if it does not match, then the next rule, and
any other rules that are chained together, are skipped.

CO—-cookie

The [CO], or [cookie] flag, allows you to set a cookie when a particular REWRITERULE matches. The argument
consists of three required fields and four optional fields.

The full syntax for the flag, including all attributes, is as follows:

[CO=NAME :VALUE:DOMAIN:lifetime:path:secure:httponly]

If a literal *:” character is needed in any of the cookie fields, an alternate syntax is available. To opt-in to the alternate
syntax, the cookie "Name" should be preceded with a ’;” character, and field separators should be specified as ’;’.

[CO=; NAME; VALUE : MOREVALUE; DOMAIN; lifetime; path; secure; httponly]

You must declare a name, a value, and a domain for the cookie to be set.

Domain The domain for which you want the cookie to be valid. This may be a hostname, such as
www.example.com, or it may be a domain, such as .example.com. It must be at least two parts sep-
arated by a dot. That is, it may not be merely . com or . net. Cookies of that kind are forbidden by the cookie
security model.

You may optionally also set the following values:

Lifetime The time for which the cookie will persist, in minutes. A value of 0 indicates that the cookie will persist
only for the current browser session. This is the default value if none is specified.

Path The path, on the current website, for which the cookie is valid, such as /customers/ or
/files/download/. By default, this is set to / - that is, the entire website.

180 CHAPTER 4. URL REWRITING GUIDE

Secure If setto secure, true, or 1, the cookie will only be permitted to be translated via secure (https) connections.

httponly If setto HttpOnly, true, or 1, the cookie will have the Ht tpOnly flag set, which means that the cookie
is inaccessible to JavaScript code on browsers that support this feature.

Consider this example:

RewriteEngine On
RewriteRule ""/index\.html" "-" [CO=frontdoor:yes:.example.com:1440:/]

In the example give, the rule doesn’t rewrite the request. The "-" rewrite target tells mod_rewrite to pass the request
through unchanged. Instead, it sets a cookie called ’frontdoor’ to a value of "yes’. The cookie is valid for any host in
the . example.com domain. It is set to expire in 1440 minutes (24 hours) and is returned for all URIs.

DPI—discardpath

The DPI flag causes the PATH_INFO portion of the rewritten URI to be discarded.
This flag is available in version 2.2.12 and later.

In per-directory context, the URI each REWRITERULE compares against is the concatenation of the current values of
the URI and PATH_INFO.

The current URI can be the initial URI as requested by the client, the result of a previous round of mod_rewrite
processing, or the result of a prior rule in the current round of mod_rewrite processing.

In contrast, the PATH_INFO that is appended to the URI before each rule reflects only the value of PATH_INFO before
this round of mod_rewrite processing. As a consequence, if large portions of the URI are matched and copied into a
substitution in multiple REWRITERULE directives, without regard for which parts of the URI came from the current
PATH_INFO, the final URI may have multiple copies of PATH_INFO appended to it.

Use this flag on any substitution where the PATH_INFO that resulted from the previous mapping of this request
to the filesystem is not of interest. This flag permanently forgets the PATH_INFO established before this round of
mod_rewrite processing began. PATH_INFO will not be recalculated until the current round of mod_rewrite processing
completes. Subsequent rules during this round of processing will see only the direct result of substitutions, without
any PATH_INFO appended.

E—env

With the [E], or [env] flag, you can set the value of an environment variable. Note that some environment variables
may be set after the rule is run, thus unsetting what you have set. See the Environment Variables document (p. 92) for
more details on how Environment variables work.

The full syntax for this flag is:

[E=VAR:VAL]
[E=!VAR]

VAL may contain backreferences ($N or $N) which are expanded.

Using the short form

[E=VAR]

4.10. REWRITERULE FLAGS 181

you can set the environment variable named VAR to an empty value.

The form

[E=!VAR]

allows to unset a previously set environment variable named VAR.

Environment variables can then be used in a variety of contexts, including CGI programs, other RewriteRule directives,
or CustomLog directives.

The following example sets an environment variable called *image’ to a value of "1’ if the requested URI is an image
file. Then, that environment variable is used to exclude those requests from the access log.

RewriteRule "\. (pngl|gif|jpg)s$" "-" [E=image:1]
CustomLog "logs/access_log" combined env=!image

Note that this same effect can be obtained using SETENVIF. This technique is offered as an example, not as a
recommendation.

END

Using the [END] flag terminates not only the current round of rewrite processing (like [L]) but also prevents any
subsequent rewrite processing from occurring in per-directory (htaccess) context.

This does not apply to new requests resulting from external redirects.

F—forbidden

Using the [F] flag causes the server to return a 403 Forbidden status code to the client. While the same behavior can
be accomplished using the DENY directive, this allows more flexibility in assigning a Forbidden status.

The following rule will forbid . exe files from being downloaded from your server.
RewriteRule "\,exe" n_mn [F]

This example uses the "-" syntax for the rewrite target, which means that the requested URI is not modified. There’s
no reason to rewrite to another URI, if you’re going to forbid the request.

When using [F], an [L] is implied - that is, the response is returned immediately, and no further rules are evaluated.
G—gone

The [G] flag forces the server to return a 410 Gone status with the response. This indicates that a resource used to be
available, but is no longer available.

As with the [F] flag, you will typically use the "-" syntax for the rewrite target when using the [G] flag:

RewriteRule "oldproduct" "-" [G,NC]

When using [G], an [L] is implied - that is, the response is returned immediately, and no further rules are evaluated.

182 CHAPTER 4. URL REWRITING GUIDE

H—handler

Forces the resulting request to be handled with the specified handler. For example, one might use this to force all files
without a file extension to be parsed by the php handler:

RewriteRule "!\." "-" [H=application/x—httpd-php]

The regular expression above - !\ . - will match any request that does not contain the literal . character.

This can be also used to force the handler based on some conditions. For example, the following snippet used in
per-server context allows . php files to be displayed by mod_php if they are requested with the . phps extension:

RewriteRule " (/source/.+\.php)sS$" "$1" [H=application/x-httpd-php-source]

The regular expression above - ~ (/source/.+\.php) s$ - will match any request that starts with /source/
followed by 1 or n characters followed by .phps literally. The backreference $1 referrers to the captured match
within parenthesis of the regular expression.

L—Ilast

The [L] flag causes MOD_REWRITE to stop processing the rule set. In most contexts, this means that if the rule matches,
no further rules will be processed. This corresponds to the 1ast command in Perl, or the break command in C. Use
this flag to indicate that the current rule should be applied immediately without considering further rules.

If you are using REWRITERULE in either .htaccess files or in <DIRECTORY> sections, it is important to have
some understanding of how the rules are processed. The simplified form of this is that once the rules have been
processed, the rewritten request is handed back to the URL parsing engine to do what it may with it. It is possible that
as the rewritten request is handled, the .htaccess file or <DIRECTORY > section may be encountered again, and
thus the ruleset may be run again from the start. Most commonly this will happen if one of the rules causes a redirect
- either internal or external - causing the request process to start over.

It is therefore important, if you are using REWRITERULE directives in one of these contexts, that you take explicit
steps to avoid rules looping, and not count solely on the [L] flag to terminate execution of a series of rules, as shown
below.

An alternative flag, [END], can be used to terminate not only the current round of rewrite processing but prevent any
subsequent rewrite processing from occurring in per-directory (htaccess) context. This does not apply to new requests
resulting from external redirects.

The example given here will rewrite any request to index.php, giving the original request as a query string ar-
gument to index.php, however, the REWRITECOND ensures that if the request is already for index.php, the
REWRITERULE will be skipped.

RewriteBase "/"

RewriteCond "${REQUEST_URI}!" !=/index.php
RewriteRule "7 (.x)" "/index.php?reqg=$1" [L,PT]
N—next

The [N] flag causes the ruleset to start over again from the top, using the result of the ruleset so far as a starting point.
Use with extreme caution, as it may result in loop.

The [Next] flag could be used, for example, if you wished to replace a certain string or letter repeatedly in a request.
The example shown here will replace A with B everywhere in a request, and will continue doing so until there are no
more As to be replaced.

4.10. REWRITERULE FLAGS 183

RewriteRule " (.*)A(.x)" "S1IBS2" [N]

You can think of this as a while loop: While this pattern still matches (i.e., while the URI still contains an 2), perform
this substitution (i.e., replace the A with a B).

In 2.5.0 and later, this module returns an error after 10,000 iterations to protect against unintended looping. An
alternative maximum number of iterations can be specified by adding to the N flag.

Be willing to replace 1 character in each pass of the loop
RewriteRule " (.+) [><;]1$" "S1" [N=32000]

... or, give up if after 10 loops

RewriteRule " (.+) [><;]1$" "$1" [N=10]

NC—nocase

Use of the [NC] flag causes the REWRITERULE to be matched in a case-insensitive manner. That is, it doesn’t care
whether letters appear as upper-case or lower-case in the matched URI.

In the example below, any request for an image file will be proxied to your dedicated image server. The match is
case-insensitive, so that . Jpg and . JPG files are both acceptable, for example.

RewriteRule " (.*\. (Jpglgif|png))S$" "http://images.example.com$1l" [P,NC]

NE—noescape

By default, special characters, such as & and ?, for example, will be converted to their hexcode equivalent. Using the
[NE] flag prevents that from happening.

RewriteRule ""/anchor/ (.+)" "/bigpage.html#$1" [NE,R]

The above example will redirect /anchor/xyz to /bigpage.html#xyz. Omitting the [NE] will result in the #
being converted to its hexcode equivalent, $2 3, which will then result in a 404 Not Found error condition.

NS—nosubreq

Use of the [NS] flag prevents the rule from being used on subrequests. For example, a page which is included using an
SSI (Server Side Include) is a subrequest, and you may want to avoid rewrites happening on those subrequests. Also,
when MOD_DIR tries to find out information about possible directory default files (such as index.html files), this
is an internal subrequest, and you often want to avoid rewrites on such subrequests. On subrequests, it is not always
useful, and can even cause errors, if the complete set of rules are applied. Use this flag to exclude problematic rules.

To decide whether or not to use this rule: if you prefix URLs with CGI-scripts, to force them to be processed by the
CGl-script, it’s likely that you will run into problems (or significant overhead) on sub-requests. In these cases, use this
flag.

Images, javascript files, or css files, loaded as part of an HTML page, are not subrequests - the browser requests them
as separate HTTP requests.

P—proxy

Use of the [P] flag causes the request to be handled by MOD_PROXY, and handled via a proxy request. For example, if
you wanted all image requests to be handled by a back-end image server, you might do something like the following:

184 CHAPTER 4. URL REWRITING GUIDE

RewriteRule "/ (.*)\. (Jpglgiflpng)S$" "http://images.example.com/$1.$2" [P]

Use of the [P] flag implies [L] - that is, the request is immediately pushed through the proxy, and any following rules
will not be considered.

You must make sure that the substitution string is a valid URI (typically starting with http: //hostname) which can
be handled by the MOD_PROXY. If not, you will get an error from the proxy module. Use this flag to achieve a more
powerful implementation of the PROXYPASS directive, to map remote content into the namespace of the local server.

m Security Warning

Take care when constructing the target URL of the rule, considering the security impact from
allowing the client influence over the set of URLs to which your server will act as a proxy.
Ensure that the scheme and hostname part of the URL is either fixed, or does not allow the
client undue influence.

m Performance warning

Using this flag triggers the use of MOD_PROXY, without handling of persistent connections.
This means the performance of your proxy will be better if you set it up with PROXYPASS or
PROXYPASSMATCH

This is because this flag triggers the use of the default worker, which does not handle connec-
tion pooling.

Avoid using this flag and prefer those directives, whenever you can.

Note: MOD_PROXY must be enabled in order to use this flag.

PT—passthrough

The target (or substitution string) in a RewriteRule is assumed to be a file path, by default. The use of the [PT] flag
causes it to be treated as a URI instead. That is to say, the use of the [PT] flag causes the result of the REWRITERULE to
be passed back through URL mapping, so that location-based mappings, such as ALIAS, REDIRECT, or SCRIPTALIAS,
for example, might have a chance to take effect.

If, for example, you have an ALIAS for /icons, and have a REWRITERULE pointing there, you should use the [PT] flag
to ensure that the ALIAS is evaluated.

Alias "/icons" "/usr/local/apache/icons"
RewriteRule "/pics/ (.+)\.Jjpg$" "/icons/$1.gif" [PT]

Omission of the [PT] flag in this case will cause the Alias to be ignored, resulting in a ’File not found’ error being
returned.

The PT flag implies the L flag: rewriting will be stopped in order to pass the request to the next phase of processing.

Note that the PT flag is implied in per-directory contexts such as <DIRECTORY> sections or in .htaccess files.
The only way to circumvent that is to rewrite to —.

QSA—qsappend

When the replacement URI contains a query string, the default behavior of REWRITERULE is to discard the exist-
ing query string, and replace it with the newly generated one. Using the [QSA] flag causes the query strings to be
combined.

4.10. REWRITERULE FLAGS 185
Consider the following rule:
RewriteRule "/pages/ (.+)" "/page.php?page=$1" [QSA]

With the [QSA] flag, a request for /pages/123?one=two will be mapped to
/page.php?page=123&one=two. Without the [QSA] flag, that same request will be mapped to
/page.php?page=123 - that is, the existing query string will be discarded.

QSD—qsdiscard

When the requested URI contains a query string, and the target URI does not, the default behavior of REWRITERULE
is to copy that query string to the target URI. Using the [QSD] flag causes the query string to be discarded.

This flag is available in version 2.4.0 and later.
Using [QSD] and [QSA] together will result in [QSD] taking precedence.

If the target URI has a query string, the default behavior will be observed - that is, the original query string will be
discarded and replaced with the query string in the RewriteRule target URL

QSL—qslast

By default, the first (left-most) question mark in the substitution delimits the path from the query string. Using the
[QSL] flag instructs REWRITERULE to instead split the two components using the last (right-most) question mark.

This is useful when mapping to files that have literal question marks in their filename. If no query string is used in the
substitution, a question mark can be appended to it in combination with this flag.

This flag is available in version 2.4.19 and later.

R—redirect

Use of the [R] flag causes a HTTP redirect to be issued to the browser. If a fully-qualified URL is specified (that is,
including http://servername/) then a redirect will be issued to that location. Otherwise, the current protocol,
servername, and port number will be used to generate the URL sent with the redirect.

Any valid HTTP response status code may be specified, using the syntax [R=305], with a 302 status code being used
by default if none is specified. The status code specified need not necessarily be a redirect (3xx) status code. However,
if a status code is outside the redirect range (300-399) then the substitution string is dropped entirely, and rewriting is
stopped as if the L were used.

In addition to response status codes, you may also specify redirect status using their symbolic names: temp (default),
permanent, or seeother.

You will almost always want to use [R] in conjunction with [L] (that is, use [R,L]) because on its own, the [R] flag
prepends http://thishost [:thisport] to the URI, but then passes this on to the next rule in the ruleset,
which can often result in *Invalid URI in request’ warnings.

S—skip

The [S] flag is used to skip rules that you don’t want to run. The syntax of the skip flag is [S=N], where N signifies
the number of rules to skip (provided the REWRITERULE and any preceding REWRITECOND directives match). This
can be thought of as a goto statement in your rewrite ruleset. In the following example, we only want to run the
REWRITERULE if the requested URI doesn’t correspond with an actual file.

186 CHAPTER 4. URL REWRITING GUIDE

Is the request for a non-existent file?

RewriteCond "${REQUEST_FILENAME}" !-f
RewriteCond "${REQUEST_FILENAME}" !-d

If so, skip these two RewriteRules

RewriteRule ".2" """ [S=2]
RewriteRule " (.*\.gif)" "images.php?S$1"
RewriteRule " (.x\.html)" "docs.php?$1"

This technique is useful because a REWRITECOND only applies to the REWRITERULE immediately following it.
Thus, if you want to make a RewriteCond apply to several RewriteRules, one possible technique is to negate
those conditions and add a RewriteRule with a [Skip] flag. You can use this to make pseudo if-then-else constructs:
The last rule of the then-clause becomes sk ip=N, where N is the number of rules in the else-clause:

Does the file exist?

RewriteCond "${REQUEST_FILENAME}" !-f

RewriteCond "${REQUEST_FILENAME}" !-d

Create an if-then-else construct by skipping 3 lines if we meant to go to the
RewriteRule ".?2" """ [S=3]

IF the file exists, then:

RewriteRule " (.*\.gif)" "images.php?S$1"
RewriteRule " (.x\.html)" "docs.php?$1"
Skip past the "else" stanza.
RewriteRule ".?2" """ [S=1]
ELSE...
RewriteRule " (.*)" "404 .php?file=S1"
END

It is probably easier to accomplish this kind of configuration using the <IF>, <ELSEIF>, and <ELSE> directives
instead.

T—type

Sets the MIME type with which the resulting response will be sent. This has the same effect as the ADDTYPE directive.

For example, you might use the following technique to serve Perl source code as plain text, if requested in a particular
way:

Serve .pl files as plain text
RewriteRule "\.pl$" "-" [T=text/plain]

Or, perhaps, if you have a camera that produces jpeg images without file extensions, you could force those images to
be served with the correct MIME type by virtue of their file names:

Files with 'IMG’ in the name are jpg images.
RewriteRule "IMG" "-" [T=image/jpg]

Please note that this is a trivial example, and could be better done using <FILESMATCH>> instead. Always consider
the alternate solutions to a problem before resorting to rewrite, which will invariably be a less efficient solution than
the alternatives.

If used in per-directory context, use only — (dash) as the substitution for the entire round of mod_rewrite processing,
otherwise the MIME-type set with this flag is lost due to an internal re-processing (including subsequent rounds of
mod_rewrite processing). The L flag can be useful in this context to end the current round of mod_rewrite processing.

"else"

stai

4.11. APACHE MOD_REWRITE TECHNICAL DETAILS 187
4.11 Apache mod rewrite Technical Details

This document discusses some of the technical details of mod_rewrite and URL matching.

See also

e Module documentation (p. 867)

e mod_rewrite introduction (p. 147)

e Redirection and remapping (p. 152)
o Controlling access (p. 159)

e Virtual hosts (p. 162)

e Proxying (p. 165)

e Using RewriteMap (p. 166)

e Advanced techniques (p. 172)

e When not to use mod_rewrite (p. 175)

API Phases

The Apache HTTP Server handles requests in several phases. At each of these phases, one or more modules may be
called upon to handle that portion of the request lifecycle. Phases include things like URL-to-filename translation,
authentication, authorization, content, and logging. (This is not an exhaustive list.)

mod_rewrite acts in two of these phases (or "hooks", as they are often called) to influence how URLs may be rewritten.

First, it uses the URL-to-filename translation hook, which occurs after the HTTP request has been read, but before any
authorization starts. Secondly, it uses the Fixup hook, which is after the authorization phases, and after per-directory
configuration files (. htaccess files) have been read, but before the content handler is called.

After a request comes in and a corresponding server or virtual host has been determined, the rewriting engine starts
processing any mod_rewrite directives appearing in the per-server configuration. (i.e., in the main server configu-
ration file and <VIRTUALHOST> sections.) This happens in the URL-to-filename phase.

A few steps later, once the final data directories have been found, the per-directory configuration directives
(.htaccess files and <DIRECTORY > blocks) are applied. This happens in the Fixup phase.

In each of these cases, mod_rewrite rewrites the REQUEST_URT either to a new URL, or to a filename.

In per-directory context (i.e., within .htaccess files and Directory blocks), these rules are being applied after
a URL has already been translated to a filename. Because of this, the URL-path that mod_rewrite initially compares
REWRITERULE directives against is the full filesystem path to the translated filename with the current directories path
(including a trailing slash) removed from the front.

To illustrate: If rules are in /var/www/foo/.htaccess and a request for /foo/bar/baz is being processed, an expression
like "bar/baz$ would match.

If a substitution is made in per-directory context, a new internal subrequest is issued with the new URL, which restarts
processing of the request phases. If the substitution is a relative path, the REWRITEBASE directive determines the
URL-path prefix prepended to the substitution. In per-directory context, care must be taken to create rules which will
eventually (in some future "round" of per-directory rewrite processing) not perform a substitution to avoid looping.
(See RewriteLooping® for further discussion of this problem.)

Because of this further manipulation of the URL in per-directory context, you’ll need to take care to craft your rewrite
rules differently in that context. In particular, remember that the leading directory path will be stripped off of the URL
that your rewrite rules will see. Consider the examples below for further clarification.

Ohttp://wiki.apache.org/httpd/RewriteLooping

http://wiki.apache.org/httpd/RewriteLooping

188 CHAPTER 4. URL REWRITING GUIDE

Location of rule Rule

VirtualHost section RewriteRule "“/images/(.+)\.jpg" "/images/$1.gif"
.htaccess file in document root RewriteRule "“images/(.+)\.jpg" "images/$1.gif"
.htaccess file in images directory RewriteRule "~(.+)\.jpg" "$1.gif"

For even more insight into how mod_rewrite manipulates URLSs in different contexts, you should consult the log entries
(p- 867) made during rewriting.

Ruleset Processing

Now when mod_rewrite is triggered in these two API phases, it reads the configured rulesets from its configuration
structure (which itself was either created on startup for per-server context or during the directory walk of the Apache
kernel for per-directory context). Then the URL rewriting engine is started with the contained ruleset (one or more
rules together with their conditions). The operation of the URL rewriting engine itself is exactly the same for both
configuration contexts. Only the final result processing is different.

The order of rules in the ruleset is important because the rewriting engine processes them in a special (and not very
obvious) order. The rule is this: The rewriting engine loops through the ruleset rule by rule (REWRITERULE directives)
and when a particular rule matches it optionally loops through existing corresponding conditions (RewriteCond
directives). For historical reasons the conditions are given first, and so the control flow is a little bit long-winded. See
Figure 1 for more details.

4.11. APACHE MOD_REWRITE TECHNICAL DETAILS 189

- l The request]
Redirect or proxy

serve the the contents v
resource Apache J

receives URI

RewriteRule]

v

Check

Mates,

“RewriteCond?

Yes

substitution

All true? .

Figure 1:The control flow through the rewriting ruleset

First the URL is matched against the Pattern of each rule. If it fails, mod_rewrite immediately stops processing this
rule, and continues with the next rule. If the Pattern matches, mod_rewrite looks for corresponding rule conditions
(RewriteCond directives, appearing immediately above the RewriteRule in the configuration). If none are present, it
substitutes the URL with a new value, which is constructed from the string Substitution, and goes on with its rule-
looping. But if conditions exist, it starts an inner loop for processing them in the order that they are listed. For
conditions, the logic is different: we don’t match a pattern against the current URL. Instead we first create a string
TestString by expanding variables, back-references, map lookups, efc. and then we try to match CondPattern against
it. If the pattern doesn’t match, the complete set of conditions and the corresponding rule fails. If the pattern matches,
then the next condition is processed until no more conditions are available. If all conditions match, processing is
continued with the substitution of the URL with Substitution.

190 CHAPTER 4. URL REWRITING GUIDE

Chapter 5

Apache SSL/TLS Encryption

191

192 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

5.1 Apache SSL/TLS Encryption

The Apache HTTP Server module MOD_SSL provides an interface to the OpenSSL! library, which provides Strong
Encryption using the Secure Sockets Layer and Transport Layer Security protocols.

Documentation

e mod_ssl Configuration How-To (p. 206)
e Introduction To SSL (p. 193)
Compatibility (p. 202)

Frequently Asked Questions (p. 212)
Glossary (p. 1096)

mod_ssl

Extensive documentation on the directives and environment variables provided by this module is provided in the
mod_ssl reference documentation (p. 916) .

Uhttp://www.openssl.org/

http://www.openssl.org/

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 193

5.2 SSL/TLS Strong Encryption: An Introduction

As an introduction this chapter is aimed at readers who are familiar with the Web, HTTP, and Apache, but are not
security experts. It is not intended to be a definitive guide to the SSL protocol, nor does it discuss specific techniques
for managing certificates in an organization, or the important legal issues of patents and import and export restrictions.
Rather, it is intended to provide a common background to MOD_SSL users by pulling together various concepts,
definitions, and examples as a starting point for further exploration.

Cryptographic Techniques

Understanding SSL requires an understanding of cryptographic algorithms, message digest functions (aka. one-way
or hash functions), and digital signatures. These techniques are the subject of entire books (see for instance [AC96])
and provide the basis for privacy, integrity, and authentication.

Cryptographic Algorithms

Suppose Alice wants to send a message to her bank to transfer some money. Alice would like the message to be
private, since it will include information such as her account number and transfer amount. One solution is to use a
cryptographic algorithm, a technique that would transform her message into an encrypted form, unreadable until it is
decrypted. Once in this form, the message can only be decrypted by using a secret key. Without the key the message is
useless: good cryptographic algorithms make it so difficult for intruders to decode the original text that it isn’t worth
their effort.

There are two categories of cryptographic algorithms: conventional and public key.

Conventional cryptography also known as symmetric cryptography, requires the sender and receiver to share a key:
a secret piece of information that may be used to encrypt or decrypt a message. As long as this key is kept
secret, nobody other than the sender or recipient can read the message. If Alice and the bank know a secret key,
then they can send each other private messages. The task of sharing a key between sender and recipient before
communicating, while also keeping it secret from others, can be problematic.

Public key cryptography also known as asymmetric cryptography, solves the key exchange problem by defining an
algorithm which uses two keys, each of which may be used to encrypt a message. If one key is used to encrypt a
message then the other must be used to decrypt it. This makes it possible to receive secure messages by simply
publishing one key (the public key) and keeping the other secret (the private key).

Anyone can encrypt a message using the public key, but only the owner of the private key will be able to read it. In
this way, Alice can send private messages to the owner of a key-pair (the bank), by encrypting them using their public
key. Only the bank will be able to decrypt them.

Message Digests

Although Alice may encrypt her message to make it private, there is still a concern that someone might modify her
original message or substitute it with a different one, in order to transfer the money to themselves, for instance. One
way of guaranteeing the integrity of Alice’s message is for her to create a concise summary of her message and send
this to the bank as well. Upon receipt of the message, the bank creates its own summary and compares it with the one
Alice sent. If the summaries are the same then the message has been received intact.

A summary such as this is called a message digest, one-way function or hash function. Message digests are used to
create a short, fixed-length representation of a longer, variable-length message. Digest algorithms are designed to
produce a unique digest for each message. Message digests are designed to make it impractically difficult to determine

194 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

the message from the digest and (in theory) impossible to find two different messages which create the same digest —
thus eliminating the possibility of substituting one message for another while maintaining the same digest.

Another challenge that Alice faces is finding a way to send the digest to the bank securely; if the digest is not sent
securely, its integrity may be compromised and with it the possibility for the bank to determine the integrity of the
original message. Only if the digest is sent securely can the integrity of the associated message be determined.

One way to send the digest securely is to include it in a digital signature.

Digital Signatures

When Alice sends a message to the bank, the bank needs to ensure that the message is really from her, so an in-
truder cannot request a transaction involving her account. A digital signature, created by Alice and included with the
message, serves this purpose.

Digital signatures are created by encrypting a digest of the message and other information (such as a sequence number)
with the sender’s private key. Though anyone can decrypt the signature using the public key, only the sender knows
the private key. This means that only the sender can have signed the message. Including the digest in the signature
means the signature is only good for that message; it also ensures the integrity of the message since no one can change
the digest and still sign it.

To guard against interception and reuse of the signature by an intruder at a later date, the signature contains a unique
sequence number. This protects the bank from a fraudulent claim from Alice that she did not send the message — only
she could have signed it (non-repudiation).

Certificates

Although Alice could have sent a private message to the bank, signed it and ensured the integrity of the message, she
still needs to be sure that she is really communicating with the bank. This means that she needs to be sure that the
public key she is using is part of the bank’s key-pair, and not an intruder’s. Similarly, the bank needs to verify that the
message signature really was signed by the private key that belongs to Alice.

If each party has a certificate which validates the other’s identity, confirms the public key and is signed by a trusted
agency, then both can be assured that they are communicating with whom they think they are. Such a trusted agency
is called a Certificate Authority and certificates are used for authentication.

Certificate Contents

A certificate associates a public key with the real identity of an individual, server, or other entity, known as the subject.
As shown in Table 1, information about the subject includes identifying information (the distinguished name) and the
public key. It also includes the identification and signature of the Certificate Authority that issued the certificate and
the period of time during which the certificate is valid. It may have additional information (or extensions) as well as
administrative information for the Certificate Authority’s use, such as a serial number.

Table 1: Certificate Information

Subject Distinguished Name, Public Key
Issuer Distinguished Name, Signature
Period of Validity Not Before Date, Not After Date
Administrative Information Version, Serial Number

Extended Information Basic Constraints, Netscape Flags, etc.

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 195

A distinguished name is used to provide an identity in a specific context — for instance, an individual might have a
personal certificate as well as one for their identity as an employee. Distinguished names are defined by the X.509
standard [X509], which defines the fields, field names and abbreviations used to refer to the fields (see Table 2).

Table 2: Distinguished Name Information

DN Field Abbrev. Description Example

Common Name CN Name being certified CN=Joe Average

Organization or Company (0] Name is associated with this O=Snake Oil, Ltd.
organization

Organizational Unit ou Name is associated with this OU=Research Institute
organization unit, such as a department

City/Locality L Name is located in this City L=Snake City

State/Province ST Name is located in this State/Province | ST=Desert

Country C Name is located in this Country (ISO | C=XZ
code)

A Certificate Authority may define a policy specifying which distinguished field names are optional and which are
required. It may also place requirements upon the field contents, as may users of certificates. For example, a Netscape
browser requires that the Common Name for a certificate representing a server matches a wildcard pattern for the
domain name of that server, such as x . snakeoil.com.

The binary format of a certificate is defined using the ASN.1 notation [ASN1] [PKCS]. This notation defines how to
specify the contents and encoding rules define how this information is translated into binary form. The binary encoding
of the certificate is defined using Distinguished Encoding Rules (DER), which are based on the more general Basic
Encoding Rules (BER). For those transmissions which cannot handle binary, the binary form may be translated into
an ASCII form by using Base64 encoding [MIME]. When placed between begin and end delimiter lines (as below),
this encoded version is called a PEM (" Privacy Enhanced Mail") encoded certificate.

Example of a PEM-encoded certificate (snakeoil.crt)

MIIC7jCCAlegAwIBAgIBATANBgkghkiGI9wOBAQQFADCBQTELMAKGA1UEBhMCWEkx
FTATBgNVBAGTDENuYWt 1ITER1c2VydDETMBEGA1UEBxMKU25ha2UgVG93b jEXMBUG
A1UEChMOU25ha2UgT21sLCBMdGOxHJACcBgNVBASTFUNl1cnRpZml jYXRIIEF1dGhv
cml0eTEVMBMGA1UEAXMMU25ha2U0gT21sIENBMRAWHAYJK0ZIThveNAQkBEFg9jYUBzZ
bmFrZW9pbC5kb20wHhcNOTgxMDIxMDglODM2WhcNOTkxMDIxMDg1lODM2WjCBpzEL
MAkKkGA1UEBhMCWFkxFTATBgNVBAgGTDEFNuYWt 1IER1c2VydDETMBEGA1UEBxXMKU25h
a2UgVG93bjEXMBUGA1UEChMOU25ha2UgT21sLCBMAGQOXFzAVBgNVBAsSTD1d1YnN1
cnZlciBUZWFtMRkwEFwYDVQQODExB3d3cuc25ha2vvaWwuZG9tMR8wHQYJKoZIhveN
AQkBFhB3d3dAc25ha2VvaWwuzZG9tMIGEMAOGCSgGSIb3DQEBAQUAAAGNADCBiQKB
gQDH9Ge/s2zcH+da+rPTx/DPRp3xGjHZ4GG6pCmvADIELtBtKBFACZ64n+Dy 7Np8b
VKR+yy5DGQ11jsHID/j8H1IGE+g4TZ80Fk 7BNBFazHxFbYI40KMiCxdKzdiflyfaa
1WoANF1Az1SdbxeGVHOTOK+gT5w3UxwZKv2DLbCTzLZyPwIDAQABOYyYwJIDAPBgNV
HRMECDAGAQH/AgEAMBEGCWCGSAGG+EIBAQQEAWIAQDANBgkghkiGOw0OBAQQFAAORB
gQAZUIHAL4D090E6LVv2k56Gp380BDUILVvwLglv1KL8mQR+KF jghCrtpgaztZgcDt
292QoyulCgSzHbEGmMiOEsdkPfgbmpOpenssIFePYNI+/8u9HT4LuKMJIX15hxBam7
dUHzICxBVC11nHyYGjDuAMhe3961YAn8bC1ldl/L4NMGBCQ==

Certificate Authorities

By verifying the information in a certificate request before granting the certificate, the Certificate Authority assures
itself of the identity of the private key owner of a key-pair. For instance, if Alice requests a personal certificate, the
Certificate Authority must first make sure that Alice really is the person the certificate request claims she is.

196 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Certificate Chains

A Certificate Authority may also issue a certificate for another Certificate Authority. When examining a certificate,
Alice may need to examine the certificate of the issuer, for each parent Certificate Authority, until reaching one which
she has confidence in. She may decide to trust only certificates with a limited chain of issuers, to reduce her risk of a
"bad" certificate in the chain.

Creating a Root-Level CA

As noted earlier, each certificate requires an issuer to assert the validity of the identity of the certificate subject, up to
the top-level Certificate Authority (CA). This presents a problem: who can vouch for the certificate of the top-level
authority, which has no issuer? In this unique case, the certificate is "self-signed", so the issuer of the certificate
is the same as the subject. Browsers are preconfigured to trust well-known certificate authorities, but it is important
to exercise extra care in trusting a self-signed certificate. The wide publication of a public key by the root authority
reduces the risk in trusting this key — it would be obvious if someone else publicized a key claiming to be the authority.

A number of companies, such as Thawte? and VeriSign® have established themselves as Certificate Authorities. These
companies provide the following services:

e Verifying certificate requests
e Processing certificate requests

e Issuing and managing certificates

It is also possible to create your own Certificate Authority. Although risky in the Internet environment, it may be
useful within an Intranet where the organization can easily verify the identities of individuals and servers.

Certificate Management

Establishing a Certificate Authority is a responsibility which requires a solid administrative, technical and management
framework. Certificate Authorities not only issue certificates, they also manage them — that is, they determine for how
long certificates remain valid, they renew them and keep lists of certificates that were issued in the past but are no
longer valid (Certificate Revocation Lists, or CRLs).

For example, if Alice is entitled to a certificate as an employee of a company but has now left that company, her
certificate may need to be revoked. Because certificates are only issued after the subject’s identity has been verified
and can then be passed around to all those with whom the subject may communicate, it is impossible to tell from the
certificate alone that it has been revoked. Therefore when examining certificates for validity it is necessary to contact
the issuing Certificate Authority to check CRLs — this is usually not an automated part of the process.

:? Note

If you use a Certificate Authority that browsers are not configured to trust by default, it is
necessary to load the Certificate Authority certificate into the browser, enabling the browser to
validate server certificates signed by that Certificate Authority. Doing so may be dangerous,
since once loaded, the browser will accept all certificates signed by that Certificate Authority.

Secure Sockets Layer (SSL)

The Secure Sockets Layer protocol is a protocol layer which may be placed between a reliable connection-oriented
network layer protocol (e.g. TCP/IP) and the application protocol layer (e.g. HTTP). SSL provides for secure com-
munication between client and server by allowing mutual authentication, the use of digital signatures for integrity and
encryption for privacy.

Zhttp://www.thawte.com/
3http://www.verisign.com/

http://www.thawte.com/
http://www.verisign.com/

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION

The protocol is designed to support a range of choices for specific algorithms used for cryptography, digests and
signatures. This allows algorithm selection for specific servers to be made based on legal, export or other concerns
and also enables the protocol to take advantage of new algorithms. Choices are negotiated between client and server

when establishing a protocol session.

Table 4: Versions of the SSL protocol

Version Source Description
SSL v2.0 Vendor Standard (from | First SSL protocol for which imple-
Netscape Corp.) mentations exist
SSL v3.0 Expired Internet Draft | Revisions to prevent specific security
(from Netscape Corp.) | attacks, add non-RSA ciphers and sup-
[SSL3] port for certificate chains
TLS v1.0 Proposed Internet Stan- | Revision of SSL 3.0 to update the MAC
dard (from IETF) [TLS1] layer to HMAC, add block padding for
block ciphers, message order standard-
ization and more alert messages.
TLS v1.1 Proposed Internet | Update of TLS 1.0 to add protection
Standard (from IETF) | against Cipher block chaining (CBC)
[TLS11] attacks.
TLS v1.2 Proposed Internet | Update of TLS 1.2 deprecating MDS5

Standard (from IETF)
[TLS12]

as hash, and adding incompatibility to
SSL so it will never negotiate the use
of SSLv2

There are a number of versions of the SSL protocol, as shown in Table 4. As noted there, one of the benefits in SSL
3.0 is that it adds support of certificate chain loading. This feature allows a server to pass a server certificate along
with issuer certificates to the browser. Chain loading also permits the browser to validate the server certificate, even if
Certificate Authority certificates are not installed for the intermediate issuers, since they are included in the certificate
chain. SSL 3.0 is the basis for the Transport Layer Security [TLS] protocol standard, currently in development by the

Internet Engineering Task Force (IETF).

Establishing a Session

The SSL session is established by following a handshake sequence between client and server, as shown in Figure 1.
This sequence may vary, depending on whether the server is configured to provide a server certificate or request a client
certificate. Although cases exist where additional handshake steps are required for management of cipher information,
this article summarizes one common scenario. See the SSL specification for the full range of possibilities.

i Note

Once an SSL session has been established, it may be reused. This avoids the performance
penalty of repeating the many steps needed to start a session. To do this, the server assigns
each SSL session a unique session identifier which is cached in the server and which the client
can use in future connections to reduce the handshake time (until the session identifier expires

from the cache of the server).

198 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

ClhentHello -l Estahlish protocal version, session id,
. Hells cipher suite, compression method
- EIVEITE Exchange random values
e Cetifieate |
. Cptionall send senier certificate
- el et and request client cerificate
ServerHelloDong
Eow Joui Send client cerdificate response if
Certificate Verify reguested
=
Change Ciphers pec o
Finished -
_ Chanoge CipherSuite and Finish
| e CiphetS pec Handshake
- Finished
Client SETVEr

Figure I: Simplified SSL Handshake Sequence

The elements of the handshake sequence, as used by the client and server, are listed below:

1. Negotiate the Cipher Suite to be used during data transfer
2. Establish and share a session key between client and server
3. Optionally authenticate the server to the client

4. Optionally authenticate the client to the server

The first step, Cipher Suite Negotiation, allows the client and server to choose a Cipher Suite supported by both
of them. The SSL3.0 protocol specification defines 31 Cipher Suites. A Cipher Suite is defined by the following
components:

e Key Exchange Method
e Cipher for Data Transfer
e Message Digest for creating the Message Authentication Code (MAC)

These three elements are described in the sections that follow.

Key Exchange Method

The key exchange method defines how the shared secret symmetric cryptography key used for application data transfer
will be agreed upon by client and server. SSL 2.0 uses RSA key exchange only, while SSL 3.0 supports a choice of
key exchange algorithms including RSA key exchange (when certificates are used), and Diffie-Hellman key exchange
(for exchanging keys without certificates, or without prior communication between client and server).

One variable in the choice of key exchange methods is digital signatures — whether or not to use them, and if so, what
kind of signatures to use. Signing with a private key provides protection against a man-in-the-middle-attack during
the information exchange used to generating the shared key [AC96, p516].

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 199

Cipher for Data Transfer

SSL uses conventional symmetric cryptography, as described earlier, for encrypting messages in a session. There are
nine choices of how to encrypt, including the option not to encrypt:

e No encryption

e Stream Ciphers

— RC4 with 40-bit keys
— RC4 with 128-bit keys

e CBC Block Ciphers

RC2 with 40 bit key

DES with 40 bit key

DES with 56 bit key
Triple-DES with 168 bit key
Idea (128 bit key)

Fortezza (96 bit key)

"CBC" refers to Cipher Block Chaining, which means that a portion of the previously encrypted cipher text is used in
the encryption of the current block. "DES" refers to the Data Encryption Standard [AC96, ch12], which has a number
of variants (including DES40 and 3DES_EDE). "Idea" is currently one of the best and cryptographically strongest
algorithms available, and "RC2" is a proprietary algorithm from RSA DSI [AC96, ch13].

Digest Function

The choice of digest function determines how a digest is created from a record unit. SSL supports the following:

e No digest (Null choice)
e MDS5, a 128-bit hash
e Secure Hash Algorithm (SHA-1), a 160-bit hash

The message digest is used to create a Message Authentication Code (MAC) which is encrypted with the message to
verify integrity and to protect against replay attacks.

Handshake Sequence Protocol

The handshake sequence uses three protocols:

e The SSL Handshake Protocol for performing the client and server SSL session establishment.
e The SSL Change Cipher Spec Protocol for actually establishing agreement on the Cipher Suite for the session.

e The SSL Alert Protocol for conveying SSL error messages between client and server.

These protocols, as well as application protocol data, are encapsulated in the SSL Record Protocol, as shown in Figure
2. An encapsulated protocol is transferred as data by the lower layer protocol, which does not examine the data. The
encapsulated protocol has no knowledge of the underlying protocol.

200 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

SEL
3L Change | S50 Aled
Handshake Cipher Spec | Protocol HTTP Telnet PP
P ratocol

Sal Record Protocol

TCF

Figure 2: SSL Protocol Stack

The encapsulation of SSL control protocols by the record protocol means that if an active session is renegotiated the
control protocols will be transmitted securely. If there was no previous session, the Null cipher suite is used, which
means there will be no encryption and messages will have no integrity digests, until the session has been established.

Data Transfer

The SSL Record Protocol, shown in Figure 3, is used to transfer application and SSL Control data between the client
and server, where necessary fragmenting this data into smaller units, or combining multiple higher level protocol data
messages into single units. It may compress, attach digest signatures, and encrypt these units before transmitting them
using the underlying reliable transport protocol (Note: currently, no major SSL implementations include support for
compression).

Application Data | abcdefighd

Fragment/Combine

¥
Record ProtocolUnits | abec || def |[ghi |
Compress
L)
Compressed Unit
MAC Encrypt
¥
Encrypted A A
Transmit
L]
TCP Packet

Figure 3: SSL Record Protocol

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 201

Securing HTTP Communication

One common use of SSL is to secure Web HTTP communication between a browser and a webserver. This does not
preclude the use of non-secured HTTP - the secure version (called HTTPS) is the same as plain HTTP over SSL, but
uses the URL scheme https rather than http, and a different server port (by default, port 443). This functionality
is a large part of what MOD_SSL provides for the Apache webserver.

References

[AC96] Bruce Schneier, Applied Cryptography, 2nd Edition, Wiley, 1996. See http://www.counterpane.com/ for
various other materials by Bruce Schneier.

[ASN1] ITU-T Recommendation X.208, Specification of Abstract Syntax Notation One (ASN.1), last updated 2008.
See http://www.itu.int/ITU-T/asnl1/.

[X509] ITU-T Recommendation X.509, The Directory - Authentication Framework. For references, see
http://en.wikipedia.org/wiki/X.509.

[PKCS] Public Key Cryptography Standards (PKCS), RSA Laboratories Technical Notes, See
http://www.rsasecurity.com/rsalabs/pkcs/.

[MIME] N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, RFC2045. See for instance http://tools.ietf.org/html/rfc2045.

[SSL3] Alan O. Freier, Philip Karlton, Paul C. Kocher, The SSL Protocol Version 3.0, 1996. See
http://www.netscape.com/eng/ssl13/draft302.txt.

[TLS1] Tim Dierks, Christopher Allen, The TLS Protocol Version 1.0, 1999. See http://ietf.org/rfc/rfc2246.txt.
[TLS11] The TLS Protocol Version 1.1, 2006. See http://tools.ietf.org/html/rfc4346.
[TLS12] The TLS Protocol Version 1.2, 2008. See http://tools.ietf.org/html/rfc5246.

202 CHAPTER 5. APACHE SSL/TLS ENCRYPTION
5.3 SSL/TLS Strong Encryption: Compatibility

This page covers backwards compatibility between mod_ssl and other SSL solutions. mod_ssl is not the only SSL
solution for Apache; four additional products are (or were) also available: Ben Laurie’s freely available Apache-SSL*
(from where mod_ssl were originally derived in 1998), Red Hat’s commercial Secure Web Server (which was based
on mod_ssl), Covalent’s commercial Raven SSL Module (also based on mod_ssl) and finally C2Net’s (now Red Hat’s)
commercial product Stronghold® (based on a different evolution branch, named Sioux up to Stronghold 2.x, and based
on mod_ssl since Stronghold 3.x).

mod_ssl mostly provides a superset of the functionality of all the other solutions, so it’s simple to migrate from one
of the older modules to mod_ssl. The configuration directives and environment variable names used by the older SSL
solutions vary from those used in mod_ssl; mapping tables are included here to give the equivalents used by mod_ssl.

Configuration Directives

The mapping between configuration directives used by Apache-SSL 1.x and mod_ssl 2.0.x is given in Table 1. The
mapping from Sioux 1.x and Stronghold 2.x is only partial because of special functionality in these interfaces which

mod_ssl doesn’t provide.

Table 1: Configuration Directive Mapping

0Old Directive mod_ssl Directive Comment
Apache-SSL 1.x & mod_ssl 2.0.x
compatibility:
SSLEnable SSLEngine on compactified
SSLDisable SSLEngine off compactified
SSLLogFile file Use per-module LOGLEVEL setting in-
stead.
SSLRequiredCiphers spec SSLCipherSuite spec renamed
SSLRequireCiphercl ... SSLRequire %{SSL_CIPHER} in generalized
{"el", ...}
SSLBanCipher cl ... SSLRequire not generalized
(%{SSL_.CIPHER} in {"cI",
ceef)
SSLFakeBasicAuth SSL(};ptions +FakeBasicAuth merged

SSLCacheServerPath dir
SSLCacheServerPort infeger
Apache-SSL 1.x compatibility:
SSLExportClientCertificates
SSLCacheServerRunDir dir
Sioux 1.x compatibility:

SSLOptions +ExportCertData

functionality removed
functionality removed

merged
functionality not supported

SSL_CertFile file SSLCertificateFile file renamed
SSL KeyFile file SSLCertificateKeyFile file renamed
SSL_CipherSuite arg SSLCipherSuite arg renamed
SSL_X509VerifyDir arg SSLCACertificatePath arg renamed
SSL_Log file - Use per-module LOGLEVEL setting in-
stead.
SSL_Connect flag SSLEngine flag renamed
SSL_ClientAuth arg SSLVerifyClient arg renamed
SSL_X509VerifyDepth arg SSLVerifyDepth arg renamed

“http://www.apache-ssl.org/
Shttp://www.redhat.com/explore/stronghold/

http://www.apache-ssl.org/
http://www.redhat.com/explore/stronghold/

5.3. SSL/TLS STRONG ENCRYPTION: COMPATIBILITY

SSL_FetchKeyPhraseFromarg

SSL_SessionDir dir

SSL_Require expr
SSL_CertFileType arg
SSL_KeyFileType arg
SSL_X509VerifyPolicy arg
SSL_LogX509Attributes arg
Stronghold 2.x compatibility:
StrongholdAccelerator engine
StrongholdKey dir
StrongholdLicenseFile dir
SSLFlag flag
SSLSessionLockFile file
SSLCipherList spec
RequireSSL

SSLErrorFile file

SSLRoot dir
SSL_CertificateLogDir dir
AuthCertDir dir

SSL_Group name
SSLProxyMachineCertPath dir

SSLProxyMachineCertFile file

SSLProxyCipherList spec

SSLCryptoDevice engine

SSLEngine flag
SSLMutex file
SSLCipherSuite spec
SSLRequireSSL

203

not directly mappable; use
SSLPassPhraseDialog
not directly mappable; use SSLSession-

Cache
not directly mappable; use SSLRequire

functionality not supported
functionality not supported
functionality not supported
functionality not supported

renamed

functionality not needed
functionality not needed
renamed

renamed

renamed

renamed

functionality not supported
functionality not supported
functionality not supported
functionality not supported
functionality not supported

SSLProxyMachineCertificatePathrenamed

dir

SSLProxyMachineCertificateFilerenamed

file
SSLProxyCipherSpec spec

renamed

Environment Variables

The mapping between environment variable names used by the older SSL solutions and the names used by mod_ssl is

given in Table 2.

Table 2: Environment Variable Derivation

Old Variable
SSL_PROTOCOL_VERSION
SSLEAY_VERSION
HTTPS_SECRETKEYSIZE
HITPS_KEYSIZE
HITPS_CIPHER
HTTPS_EXPORT
SSL_SERVER.KEY_SIZE
SSL_SERVER_CERTIFICATE
SSL_SERVER_CERT_START
SSL_SERVER_CERT_END
SSL_SERVER.CERT_SERIAL
SSL_SERVER_SIGNATURE_ALGORITHM
SSL_SERVER_DN
SSL_SERVER_CN
SSL_SERVER_EMAIL
SSL_SERVER_O
SSL_SERVER.OU

mod_ssl Variable
SSL_PROTOCOL
SSL_VERSION_LIBRARY
SSL_CIPHER_USEKEYSIZE
SSL_CIPHER_ALGKEYSIZE
SSL_CIPHER
SSL_CIPHER_EXPORT
SSL_CIPHER_ALGKEYSIZE
SSL_SERVER_CERT
SSL_SERVER_V_START
SSL_SERVER_V_END
SSL_SERVER_M_SERIAL
SSL_SERVER_A_SIG
SSL_SERVER_S_DN
SSL_SERVER_S_DN_CN
SSL_SERVER_S_DN_Email
SSL_SERVER_S_DN_O
SSL_SERVER_S_DN_OU

Comment
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed

204

SSL_SERVER_C
SSL_SERVER_SP
SSL_SERVER_L
SSL_SERVER_IDN
SSL_SERVER_ICN
SSL_SERVER_IEMAIL
SSL_SERVER_IO
SSL_SERVER_IOU
SSL_SERVER_IC
SSL_SERVER_ISP
SSL_SERVER_IL
SSL_CLIENT_CERTIFICATE
SSL_CLIENT_CERT_START
SSL_CLIENT_CERT_END
SSL_CLIENT_CERT_SERIAL

SSL_CLIENT_SIGNATURE_ALGORITHM

SSL_CLIENT_DN
SSL_CLIENT_CN
SSL_CLIENT_EMAIL
SSL_CLIENT_O
SSL_CLIENT_OU
SSL_CLIENT.C
SSL_CLIENT_SP
SSL_CLIENT_L
SSL_CLIENT_IDN
SSL_CLIENT_ICN
SSL_CLIENT_IEMAIL
SSL_CLIENT_IO
SSL_CLIENT_IOU
SSL_CLIENT_IC
SSL_CLIENT_ISP
SSL_CLIENT_IL
SSL_EXPORT

SSL_KEYSIZE
SSL_SECKEYSIZE
SSL_SSLEAY_VERSION
SSL_STRONG_CRYPTO
SSL_SERVER_KEY_EXP
SSL_SERVER_KEY_ALGORITHM
SSL_SERVER_KEY_SIZE
SSL_SERVER_SESSIONDIR
SSL_SERVER_CERTIFICATELOGDIR
SSL_SERVER_CERTFILE
SSL_SERVER_KEYFILE
SSL_SERVER_KEYFILETYPE
SSL_CLIENT_KEY_EXP
SSL_CLIENT_KEY_ALGORITHM
SSL_CLIENT_KEY_SIZE

CHAPTER 5. APACHE SSL/TLS ENCRYPTION

SSL_SERVER_S_DN_C
SSL_SERVER_S_DN_SP
SSL_SERVER_S_DN_L
SSL_SERVER_I_DN
SSL_SERVER_I_DN_CN
SSL_SERVER_I_DN_Email
SSL_SERVER_I_DN_O
SSL_SERVER_I_DN_OU
SSL_SERVER_I_DN_C
SSL_SERVER_I_DN_SP
SSL_SERVER_I_DN_L
SSL_CLIENT_CERT
SSL_CLIENT_V_START
SSL_CLIENT_V_END
SSL_CLIENT M_SERIAL
SSL_CLIENT_A_SIG
SSL_CLIENT_S_DN
SSL_CLIENT_S_DN_CN
SSL_CLIENT_S_DN_Email
SSL_CLIENT_S_DN_O
SSL_CLIENT_S_DN_OU
SSL_CLIENT_S.DN.C
SSL_CLIENT_S_DN_SP
SSL_CLIENT_S_DN_L
SSL_CLIENT_I_DN
SSL_CLIENT_I_DN_CN
SSL_CLIENT_I_DN_Email
SSL_CLIENT_I_DN_O
SSL_CLIENT_I_DN_OU
SSL_CLIENT_I_DN._C
SSL_CLIENT_I_DN_SP
SSL_CLIENT_I_DN_L
SSL_CIPHER_EXPORT
SSL_CIPHER_ALGKEYSIZE
SSL_CIPHER_USEKEYSIZE
SSL_VERSION_LIBRARY

renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
renamed
Not supported by mod_ssl
Not supported by mod_ssl
Not supported by mod_ssl
Not supported by mod_ssl
Not supported by mod_ssl
Not supported by mod_ssl
Not supported by mod_ssl
Not supported by mod_ssl
Not supported by mod_ssl
Not supported by mod_ssl
Not supported by mod_ssl
Not supported by mod_ssl

Custom Log Functions

When mod_ssl is enabled, additional functions exist for the Custom Log Format (p. 705) of MOD_LOG_CONFIG as
documented in the Reference Chapter. Beside the “%{varname}x” eXtension format function which can be used to

5.3. SSL/TLS STRONG ENCRYPTION: COMPATIBILITY

expand any variables provided by any module, an additional Cryptography

o
o

205

{name}c” cryptography format function

exists for backward compatibility. The currently implemented function calls are listed in Table 3.

Table 3: Custom Log Cryptography Function

Function Call

o° d° o° o° o° o

. .{version}c

. .{cipher}c

. .{subjectdn}c
. .{issuerdn}c
. .{errcode}c

. .{errstr}c

Description

SSL protocol version

SSL cipher

Client Certificate Subject Distinguished Name
Client Certificate Issuer Distinguished Name
Certificate Verification Error (numerical)
Certificate Verification Error (string)

206 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

5.4 SSL/TLS Strong Encryption: How-To

This document is intended to get you started, and get a few things working. You are strongly encouraged to read the
rest of the SSL documentation, and arrive at a deeper understanding of the material, before progressing to the advanced
techniques.

Basic Configuration Example
Your SSL configuration will need to contain, at minimum, the following directives.

Listen 443
<VirtualHost =x:443>
ServerName www.example.com
SSLEngine on
SSLCertificateFile "/path/to/www.example.com.cert"
SSLCertificateKeyFile "/path/to/www.example.com.key"
</VirtualHost>

Cipher Suites and Enforcing Strong Security

e How can I create an SSL server which accepts strong encryption only?

e How can I create an SSL server which accepts all types of ciphers in general, but requires a strong cipher for
access to a particular URL?

How can I create an SSL server which accepts strong encryption only?

The following enables only the strongest ciphers:
SSLCipherSuite HIGH:!aNULL: !MD5

While with the following configuration you specify a preference for specific speed-optimized ciphers (which will be
selected by mod_ssl, provided that they are supported by the client):

SSLCipherSuite RC4-SHA:AES128-SHA:HIGH: !'aNULL: !MD5
SSLHonorCipherOrder on

How can I create an SSL server which accepts all types of ciphers in general, but requires a strong ciphers for
access to a particular URL?

Obviously, a server-wide SSLCIPHERSUITE which restricts ciphers to the strong variants, isn’t the answer here. How-
ever, MOD_SSL can be reconfigured within Locat ion blocks, to give a per-directory solution, and can automatically
force a renegotiation of the SSL parameters to meet the new configuration. This can be done as follows:

be liberal in general
SSLCipherSuite ALL:!aNULL:RC4+RSA:+HIGH:+MEDIUM:+LOW:+EXP:+eNULL

<Location "/strong/area">

but https://hostname/strong/area/ and below
requires strong ciphers

SSLCipherSuite HIGH:'!aNULL:!MD5

</Location>

5.4. SSL/TLS STRONG ENCRYPTION: HOW-TO 207

OCSP Stapling

The Online Certificate Status Protocol (OCSP) is a mechanism for determining whether or not a server certificate has
been revoked, and OCSP Stapling is a special form of this in which the server, such as httpd and mod_ssl, maintains
current OCSP responses for its certificates and sends them to clients which communicate with the server. Most
certificates contain the address of an OCSP responder maintained by the issuing Certificate Authority, and mod_ssl
can communicate with that responder to obtain a signed response that can be sent to clients communicating with the
server.

Because the client can obtain the certificate revocation status from the server, without requiring an extra connection
from the client to the Certificate Authority, OCSP Stapling is the preferred way for the revocation status to be obtained.
Other benefits of eliminating the communication between clients and the Certificate Authority are that the client
browsing history is not exposed to the Certificate Authority and obtaining status is more reliable by not depending on
potentially heavily loaded Certificate Authority servers.

Because the response obtained by the server can be reused for all clients using the same certificate during the time that
the response is valid, the overhead for the server is minimal.

Once general SSL support has been configured properly, enabling OCSP Stapling generally requires only very minor
modifications to the httpd configuration - the addition of these two directives:

SSLUseStapling On
SSLStaplingCache "shmcb:ssl_stapling(32768)"

These directives are placed at global scope (i.e., not within a virtual host definition) wherever other global SSL config-
uration directives are placed, such as in conf/extra/httpd-ssl.conf for normal open source builds of httpd,
/etc/apache2/mods-enabled/ssl.conf for the Ubuntu or Debian-bundled httpd, etc.

This particular SSLSTAPLINGCACHE directive requires MOD_SOCACHE_SHMCB (from the shmcb prefix on the di-
rective’s argument). This module is usually enabled already for SSLSESSIONCACHE or on behalf of some module
other than MOD_SSL. If you enabled an SSL session cache using a mechanism other than MOD_SOCACHE_SHMCB,
use that alternative mechanism for SSLSTAPLINGCACHE as well. For example:

SSLSessionCache "dbm:ssl_scache"
SSLStaplingCache "dbm:ssl_stapling”

You can use the openssl command-line program to verify that an OCSP response is sent by your server:

$ openssl s_client -connect www.example.com:443 -status -servername www.example.com

OCSP response:

OCSP Response Data:
OCSP Response Status: successful (0x0)
Response Type: Basic OCSP Response

Cert Status: Good

The following sections highlight the most common situations which require further modification to the configuration.
Refer also to the MOD_SSL reference manual.

208 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

If more than a few SSL certificates are used for the server

OCSP responses are stored in the SSL stapling cache. While the responses are typically a few hundred to a few
thousand bytes in size, mod_ssl supports OCSP responses up to around 10K bytes in size. With more than a few
certificates, the stapling cache size (32768 bytes in the example above) may need to be increased. Error message
AHO01929 will be logged in case of an error storing a response.

If the certificate does not point to an OCSP responder, or if a different address must be used

Refer to the SSLSTAPLINGFORCEURL directive.

You can confirm that a server certificate points to an OCSP responder using the openssl command-line program, as
follows:

$ openssl x509 -in ./www.example.com.crt —-text | grep ’'OCSP.xhttp’
OCSP - URI:http://ocsp.example.com

If the OCSP URI is provided and the web server can communicate to it directly without using a proxy, no configuration
is required. Note that firewall rules that control outbound connections from the web server may need to be adjusted.

If no OCSP URI is provided, contact your Certificate Authority to determine if one is available; if so, configure it with
SSLSTAPLINGFORCEURL in the virtual host that uses the certificate.

If multiple SSL-enabled virtual hosts are configured and OCSP Stapling should be disabled for some

Add SSLUseStapling Off to the virtual hosts for which OCSP Stapling should be disabled.

If the OCSP responder is slow or unreliable

Several directives are available to handle timeouts and errors. Refer to the documentation for the SSLSTAPLING-
FAKETRYLATER, SSLSTAPLINGRESPONDERTIMEOUT, and SSLSTAPLINGRETURNRESPONDERERRORS direc-
tives.

If mod _ssl logs error AH02217

AH02217: ssl_stapling_init_cert: Can’t retrieve issuer certificate!

In order to support OCSP Stapling when a particular server certificate is used, the certificate chain for that certificate
must be configured. If it was not configured as part of enabling SSL, the AH02217 error will be issued when stapling
is enabled, and an OCSP response will not be provided for clients using the certificate.

Refer to the SSLCERTIFICATECHAINFILE and SSLCERTIFICATEFILE for instructions for configuring the certificate
chain.

Client Authentication and Access Control

e How can I force clients to authenticate using certificates?

e How can I force clients to authenticate using certificates for a particular URL, but still allow arbitrary clients to
access the rest of the server?

e How can I allow only clients who have certificates to access a particular URL, but allow all clients to access the
rest of the server?

5.4. SSL/TLS STRONG ENCRYPTION: HOW-TO 209

e How can I require HTTPS with strong ciphers, and either basic authentication or client certificates, for access to
part of the Intranet website, for clients coming from the Internet?

How can I force clients to authenticate using certificates?

When you know all of your users (eg, as is often the case on a corporate Intranet), you can require plain certificate
authentication. All you need to do is to create client certificates signed by your own CA certificate (ca . crt) and then
verify the clients against this certificate.

require a client certificate which has to be directly
signed by our CA certificate in ca.crt
SSLVerifyClient require

SSLVerifyDepth 1

SSLCACertificateFile "conf/ssl.crt/ca.crt"

How can I force clients to authenticate using certificates for a particular URL, but still allow arbitrary clients
to access the rest of the server?

To force clients to authenticate using certificates for a particular URL, you can use the per-directory reconfiguration
features of MOD_SSL:

SSLVerifyClient none
SSLCACertificateFile "conf/ssl.crt/ca.crt"

<Location "/secure/area">
SSLVerifyClient require
SSLVerifyDepth 1
</Location>

How can I allow only clients who have certificates to access a particular URL, but allow all clients to access the
rest of the server?

The key to doing this is checking that part of the client certificate matches what you expect. Usually this means
checking all or part of the Distinguished Name (DN), to see if it contains some known string. There are two ways to
do this, using either MOD_AUTH_BASIC or SSLREQUIRE.

The MOD_AUTH_BASIC method is generally required when the certificates are completely arbitrary, or when their
DNs have no common fields (usually the organisation, etc.). In this case, you should establish a password database
containing all clients allowed, as follows:

SSLVerifyClient none
SSLCACertificateFile "conf/ssl.crt/ca.crt"
SSLCACertificatePath "conf/ssl.crt"

<Directory "/usr/local/apache2/htdocs/secure/area">

SSLVerifyClient require

SSLVerifyDepth 5

SSLOptions +FakeBasicAuth
SSLRequireSSL

AuthName "Snake 0Oil Authentication"

AuthType Basic

210 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

AuthBasicProvider file
AuthUserFile "/usr/local/apache2/conf/httpd.passwd"
Require valid-user

</Directory>

The password used in this example is the DES encrypted string "password". See the SSLOPTIONS docs for more
information.

httpd.passwd

/C=DE/L=Munich/O=Snake 0il, Ltd./OU=Staff/CN=Foo:xxj31ZMTZzkVA
/C=US/L=S.F./0O=Snake 0il, Ltd./OU=CA/CN=Bar:xxj31ZMTZzkVA
/C=US/L=L.A./0O=Snake 0il, Ltd./OU=Dev/CN=Quux:xxj31ZMTZzkVA

When your clients are all part of a common hierarchy, which is encoded into the DN, you can match them more easily
using SSLREQUIRE, as follows:

SSLVerifyClient none
SSLCACertificateFile "conf/ssl.crt/ca.crt"
SSLCACertificatePath "conf/ssl.crt"

<Directory "/usr/local/apache2/htdocs/secure/area">

SSLVerifyClient require

SSLVerifyDepth 5

SSLOptions +FakeBasicAuth

SSLRequireSSL

SSLRequire %{SSL_CLIENT_S_DN_O} eq "Snake 0il, Ltd." \

and %{SSL_CLIENT_S_DN_OU} in {"Staff", "CA", "Dev"}
</Directory>

How can I require HTTPS with strong ciphers, and either basic authentication or client certificates, for access
to part of the Intranet website, for clients coming from the Internet? I still want to allow plain HTTP access for
clients on the Intranet.

These examples presume that clients on the Intranet have IPs in the range 192.168.1.0/24, and that the part of the
Intranet website you want to allow internet access to is /usr/local/apache2/htdocs/subarea. This con-
figuration should remain outside of your HTTPS virtual host, so that it applies to both HTTPS and HTTP.

SSLCACertificateFile "conf/ssl.crt/company-ca.crt"

<Directory "/usr/local/apache2/htdocs">
Outside the subarea only Intranet access is granted
Require ip 192.168.1.0/24

</Directory>

<Directory "/usr/local/apache2/htdocs/subarea">
Inside the subarea any Intranet access is allowed
but from the Internet only HTTPS + Strong-Cipher + Password
or the alternative HTTPS + Strong-Cipher + Client-Certificate

If HTTPS is used, make sure a strong cipher is used.
Additionally allow client certs as alternative to basic auth.
SSLVerifyClient optional

5.4. SSL/TLS STRONG ENCRYPTION: HOW-TO 211

SSLVerifyDepth 1
SSLOptions +FakeBasicAuth +StrictRequire
SSLRequire %${SSL_CIPHER_USEKEYSIZE} >= 128

Force clients from the Internet to use HTTPS

RewriteEngine on

RewriteCond "${REMOTE_ADDR}" "!7192\.168\.1\.[0-9]+s"
RewriteCond "S{HTTPS}" "l=on"

RewriteRule " "—n [F]

Allow Network Access and/or Basic Auth
Satisfy any

Network Access Control
Require ip 192.168.1.0/24

HTTP Basic Authentication

AuthType basic
AuthName "Protected Intranet Area"
AuthBasicProvider file
AuthUserFile "conf/protected.passwd"
Require valid-user

</Directory>

Logging

MOD_SSL can log extremely verbose debugging information to the error log, when its LOGLEVEL is set to the higher
trace levels. On the other hand, on a very busy server, level info may already be too much. Remember that you can
configure the LOGLEVEL per module to suite your needs.

212 CHAPTER 5. APACHE SSL/TLS ENCRYPTION
5.5 SSL/TLS Strong Encryption: FAQ

The wise man doesn’t give the right answers, he poses the right questions.
— Claude Levi-Strauss

Installation

e Why do I get permission errors related to SSLMutex when I start Apache?

e Why does mod_ssl stop with the error "Failed to generate temporary 512 bit RSA private key" when I start
Apache?

Why do I get permission errors related to SSLMutex when I start Apache?

Errors such as “mod_ssl: Child could not open SSLMutex lockfile
/opt/apache/logs/ssl mutex.18332 (System error follows) [...] System:
Permission denied (errno: 13)” are usually caused by overly restrictive permissions on the parent

directories. Make sure that all parent directories (here /opt, /opt/apache and /opt/apache/logs) have the
x-bit set for, at minimum, the UID under which Apache’s children are running (see the USER directive).

Why does mod_ssl stop with the error "Failed to generate temporary 512 bit RSA private key" when I start
Apache?

Cryptographic software needs a source of unpredictable data to work correctly. Many open source operating sys-
tems provide a "randomness device" that serves this purpose (usually named /dev/random). On other systems,
applications have to seed the OpenSSL Pseudo Random Number Generator (PRNG) manually with appropriate data
before generating keys or performing public key encryption. As of version 0.9.5, the OpenSSL functions that need
randomness report an error if the PRNG has not been seeded with at least 128 bits of randomness.

To prevent this error, MOD_SSL has to provide enough entropy to the PRNG to allow it to work correctly. This can be
done via the SSLRANDOMSEED directive.

Configuration

e Is it possible to provide HTTP and HTTPS from the same server?

e Which port does HTTPS use?

e How do I speak HTTPS manually for testing purposes?

e Why does the connection hang when I connect to my SSL-aware Apache server?

e Why do I get “Connection Refused” errors, when trying to access my newly installed Apache+mod_ssl server
via HTTPS?

e Why are the SSL_XXX variables not available to my CGI & SSI scripts?
e How can I switch between HTTP and HTTPS in relative hyperlinks?

Is it possible to provide HTTP and HTTPS from the same server?

Yes. HTTP and HTTPS use different server ports (HTTP binds to port 80, HTTPS to port 443), so there is no direct
conflict between them. You can either run two separate server instances bound to these ports, or use Apache’s elegant
virtual hosting facility to create two virtual servers, both served by the same instance of Apache - one responding over
HTTP to requests on port 80, and the other responding over HTTPS to requests on port 443.

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 213

Which port does HTTPS use?
You can run HTTPS on any port, but the standards specify port 443, which is where any HTTPS compliant browser will

look by default. You can force your browser to look on a different port by specifying it in the URL. For example, if your
server is set up to serve pages over HTTPS on port 8080, you can access them at https://example.com:8080/

How do I speak HTTPS manually for testing purposes?

While you usually just use

$ telnet localhost 80
GET / HTTP/1.0

for simple testing of Apache via HTTP, it’s not so easy for HTTPS because of the SSL protocol between TCP and
HTTP. With the help of OpenSSL’s s_client command, however, you can do a similar check via HTTPS:

$ openssl s_client -connect localhost:443 -state -debug
GET / HTITP/1.0

Before the actual HTTP response you will receive detailed information about the SSL handshake. For a more general
command line client which directly understands both HTTP and HTTPS, can perform GET and POST operations, can
use a proxy, supports byte ranges, etc. you should have a look at the nifty cURLS tool. Using this, you can check that
Apache is responding correctly to requests via HTTP and HTTPS as follows:

$ curl http://localhost/
$ curl https://localhost/

Why does the connection hang when I connect to my SSL-aware Apache server?

This can happen when you try to connect to a HTTPS server (or virtual server) via HTTP (eg, using
http://example.com/ instead of https://example.com). It can also happen when trying to connect via
HTTPS to a HTTP server (eg, using https://example.com/ on a server which doesn’t support HTTPS, or which
supports it on a non-standard port). Make sure that you’re connecting to a (virtual) server that supports SSL.

Why do I get ““Connection Refused” messages, when trying to access my newly installed Apache+mod_ssl server
via HTTPS?

This error can be caused by an incorrect configuration. Please make sure that your LISTEN directives match your
<VIRTUALHOST> directives. If all else fails, please start afresh, using the default configuration provided by
MOD_SSL.

Why are the SSL_XXX variables not available to my CGI & SSI scripts?

Please make sure you have “SSLOptions +StdEnvVars” enabled for the context of your CGI/SSI requests.

Ohttp://curl.haxx.se/

http://curl.haxx.se/

214 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

How can I switch between HTTP and HTTPS in relative hyperlinks?

Usually, to switch between HTTP and HTTPS, you have to use fully-qualified hyperlinks (because you have to change
the URL scheme). Using MOD_REWRITE however, you can manipulate relative hyperlinks, to achieve the same effect.

RewriteEngine on

RewriteRule "t/ (.*%)_SSLS" "https://%${SERVER_NAME}/$1" [R,L]
RewriteRule "/ (.x)_NOSSLS" "http://%{SERVER_NAME}/$1" [R,L]

This rewrite ruleset lets you use hyperlinks of the form , to switch to HTTPS
in a relative link. (Replace SSL with NOSSL to switch to HTTP.)

Certificates

e What are RSA Private Keys, CSRs and Certificates?

e Is there a difference on startup between a non-SSL-aware Apache and an SSL-aware Apache?
e How do I create a self-signed SSL Certificate for testing purposes?

e How do I create a real SSL Certificate?

e How do I create and use my own Certificate Authority (CA)?

e How can I change the pass-phrase on my private key file?

e How can I get rid of the pass-phrase dialog at Apache startup time?

e How do I verify that a private key matches its Certificate?

e How can I convert a certificate from PEM to DER format?

e Why do browsers complain that they cannot verify my server certificate?

What are RSA Private Keys, CSRs and Certificates?

An RSA private key file is a digital file that you can use to decrypt messages sent to you. It has a public component
which you distribute (via your Certificate file) which allows people to encrypt those messages to you.

A Certificate Signing Request (CSR) is a digital file which contains your public key and your name. You send the
CSR to a Certifying Authority (CA), who will convert it into a real Certificate, by signing it.

A Certificate contains your RSA public key, your name, the name of the CA, and is digitally signed by the CA.
Browsers that know the CA can verify the signature on that Certificate, thereby obtaining your RSA public key. That
enables them to send messages which only you can decrypt.

See the Introduction (p. 193) chapter for a general description of the SSL protocol.

Is there a difference on startup between a non-SSL-aware Apache and an SSL-aware Apache?

Yes. In general, starting Apache with MOD_SSL built-in is just like starting Apache without it. However, if you have a
passphrase on your SSL private key file, a startup dialog will pop up which asks you to enter the pass phrase.

Having to manually enter the passphrase when starting the server can be problematic - for example, when starting the
server from the system boot scripts. In this case, you can follow the steps below to remove the passphrase from your
private key. Bear in mind that doing so brings additional security risks - proceed with caution!

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 215

How do I create a self-signed SSL Certificate for testing purposes?

1. Make sure OpenSSL is installed and in your PATH.

2. Run the following command, to create server.key and server.crt files:
$ openssl req —-new -x509 —-nodes -out server.crt -keyout server.key
These can be used as follows in your httpd. conf file:

SSLCertificateFile /path/to/this/server.crt
SSLCertificateKeyFile /path/to/this/server.key

3. Itis important that you are aware that this server . key does not have any passphrase. To add a passphrase to
the key, you should run the following command, and enter & verify the passphrase as requested.
$ openssl rsa —-des3 —-in server.key -out server.key.new
$ mv server.key.new server.key

Please backup the server. key file, and the passphrase you entered, in a secure location.

How do I create a real SSL Certificate?

Here is a step-by-step description:

1. Make sure OpenSSL is installed and in your PATH.

2. Create a RSA private key for your Apache server (will be Triple-DES encrypted and PEM formatted):
$ openssl genrsa -des3 -out server.key 2048

Please backup this server. key file and the pass-phrase you entered in a secure location. You can see the
details of this RSA private key by using the command:

$ openssl rsa —-noout -text -in server.key
If necessary, you can also create a decrypted PEM version (not recommended) of this RSA private key with:

$ openssl rsa -in server.key -out server.key.unsecure

3. Create a Certificate Signing Request (CSR) with the server RSA private key (output will be PEM formatted):
$ openssl req —new -key server.key —-out server.csr

Make sure you enter the FQDN ("Fully Qualified Domain Name") of the server when OpenSSL prompts

you for the "CommonName", i.e. when you generate a CSR for a website which will be later accessed via
https://www.foo.dom/, enter "www.foo.dom" here. You can see the details of this CSR by using

$ openssl req —-noout -text -in server.csr

4. You now have to send this Certificate Signing Request (CSR) to a Certifying Authority (CA) to be signed.
Once the CSR has been signed, you will have a real Certificate, which can be used by Apache. You can have a
CSR signed by a commercial CA, or you can create your own CA to sign it.

Commercial CAs usually ask you to post the CSR into a web form, pay for the signing, and then send a signed
Certificate, which you can store in a server.crt file.

216 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

For details on how to create your own CA, and use this to sign a CSR, see below.

Once your CSR has been signed, you can see the details of the Certificate as follows:
$ openssl x509 —-noout -text —-in server.crt

5. You should now have two files: server.key and server.crt. These can be used as follows in your
httpd. conf file:

SSLCertificateFile /path/to/this/server.crt
SSLCertificateKeyFile /path/to/this/server.key

The server. csr file is no longer needed.

How do I create and use my own Certificate Authority (CA)?

The short answer is to use the CA. sh or CA.pl script provided by OpenSSL. Unless you have a good reason not to,
you should use these for preference. If you cannot, you can create a self-signed certificate as follows:

1. Create a RSA private key for your server (will be Triple-DES encrypted and PEM formatted):
$ openssl genrsa -des3 -out server.key 2048

Please backup this server.key file and the pass-phrase you entered in a secure location. You can see the

details of this RSA private key by using the command:
$ openssl rsa —-noout -text -in server.key

If necessary, you can also create a decrypted PEM version (not recommended) of this RSA private key with:

$ openssl rsa -in server.key -out server.key.unsecure

2. Create a self-signed Certificate (X509 structure) with the RSA key you just created (output will be PEM
formatted):

$ openssl req —-new -x509 -nodes -shal -days 365 —-key server.key -out

server.crt —extensions usr_cert
This signs the server CSR and results in a server.crt file.

You can see the details of this Certificate using:
$ openssl x509 -noout -text -in server.crt

How can I change the pass-phrase on my private key file?

You simply have to read it with the old pass-phrase and write it again, specifying the new pass-phrase. You can
accomplish this with the following commands:

$ openssl rsa -des3 -in server.key -out server.key.new
$ mv server.key.new server.key

The first time you’re asked for a PEM pass-phrase, you should enter the old pass-phrase. After that, you’ll be asked
again to enter a pass-phrase - this time, use the new pass-phrase. If you are asked to verify the pass-phrase, you’ll need
to enter the new pass-phrase a second time.

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 217

How can I get rid of the pass-phrase dialog at Apache startup time?

The reason this dialog pops up at startup and every re-start is that the RSA private key inside your server.key file is
stored in encrypted format for security reasons. The pass-phrase is needed to decrypt this file, so it can be read and
parsed. Removing the pass-phrase removes a layer of security from your server - proceed with caution!

1. Remove the encryption from the RSA private key (while keeping a backup copy of the original file):
$ cp server.key server.key.org

$ openssl rsa -in server.key.org —-out server.key

2. Make sure the server.key file is only readable by root:
$ chmod 400 server.key

Now server.key contains an unencrypted copy of the key. If you point your server at this file, it will not prompt
you for a pass-phrase. HOWEVER, if anyone gets this key they will be able to impersonate you on the net. PLEASE
make sure that the permissions on this file are such that only root or the web server user can read it (preferably get
your web server to start as root but run as another user, and have the key readable only by root).

As an alternative approach you can use the “SSLPassPhraseDialog exec:/path/to/program” facility.
Bear in mind that this is neither more nor less secure, of course.

How do I verify that a private key matches its Certificate?

A private key contains a series of numbers. Two of these numbers form the "public key", the others are part of the
"private key". The "public key" bits are included when you generate a CSR, and subsequently form part of the
associated Certificate.

To check that the public key in your Certificate matches the public portion of your private key, you simply need to
compare these numbers. To view the Certificate and the key run the commands:

$ openssl x509 -noout -text -in server.crt
$ openssl rsa —-noout -text -in server.key

The ‘modulus’ and the ‘public exponent’ portions in the key and the Certificate must match. As the public exponent
is usually 65537 and it’s difficult to visually check that the long modulus numbers are the same, you can use the
following approach:

$ openssl x509 —-noout -modulus -in server.crt | openssl md5
$ openssl rsa —-noout -modulus —-in server.key | openssl md5

This leaves you with two rather shorter numbers to compare. It is, in theory, possible that these numbers may be the
same, without the modulus numbers being the same, but the chances of this are overwhelmingly remote.

Should you wish to check to which key or certificate a particular CSR belongs you can perform the same calculation
on the CSR as follows:

$ openssl req -noout -modulus -in server.csr | openssl md5

How can I convert a certificate from PEM to DER format?

The default certificate format for OpenSSL is PEM, which is simply Base64 encoded DER, with header and footer
lines. For some applications (e.g. Microsoft Internet Explorer) you need the certificate in plain DER format. You
can convert a PEM file cert . pem into the corresponding DER file cert . der using the following command: $
openssl x509 -in cert.pem -out cert.der -outform DER

218 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Why do browsers complain that they cannot verify my server certificate?

One reason this might happen is because your server certificate is signed by an intermediate CA. Various CAs, such
as Verisign or Thawte, have started signing certificates not with their root certificate but with intermediate certificates.

Intermediate CA certificates lie between the root CA certificate (which is installed in the browsers) and the server
certificate (which you installed on the server). In order for the browser to be able to traverse and verify the trust chain
from the server certificate to the root certificate it needs need to be given the intermediate certificates. The CAs should
be able to provide you such intermediate certificate packages that can be installed on the server.

You need to include those intermediate certificates with the SSLCERTIFICATECHAINFILE directive.

The SSL Protocol

e Why do I get lots of random SSL protocol errors under heavy server load?

e Why does my webserver have a higher load, now that it serves SSL encrypted traffic?

e Why do HTTPS connections to my server sometimes take up to 30 seconds to establish a connection?

e What SSL Ciphers are supported by mod_ssl?

e Why do I get “no shared cipher” errors, when trying to use Anonymous Diffie-Hellman (ADH) ciphers?
e Why do I get a 'no shared ciphers’ error when connecting to my newly installed server?

e Why can’t I use SSL with name-based/non-IP-based virtual hosts?

e Is it possible to use Name-Based Virtual Hosting to identify different SSL virtual hosts?

e How do I get SSL compression working?

e When I use Basic Authentication over HTTPS the lock icon in Netscape browsers stays unlocked when the
dialog pops up. Does this mean the username/password is being sent unencrypted?

e Why do I get I/O errors when connecting via HTTPS to an Apache+mod_ssl server with Microsoft Internet
Explorer (MSIE)?

e How do I enable TLS-SRP?

e Why do I get handshake failures with Java-based clients when using a certificate with more than 1024 bits?
Why do I get lots of random SSL protocol errors under heavy server load?
There can be a number of reasons for this, but the main one is problems with the SSL session Cache specified by the

SSLSESSIONCACHE directive. The DBM session cache is the most likely source of the problem, so using the SHM
session cache (or no cache at all) may help.

Why does my webserver have a higher load, now that it serves SSL encrypted traffic?

SSL uses strong cryptographic encryption, which necessitates a lot of number crunching. When you request a webpage
via HTTPS, everything (even the images) is encrypted before it is transferred. So increased HTTPS traffic leads to
load increases.

Why do HTTPS connections to my server sometimes take up to 30 seconds to establish a connection?

This is usually caused by a /dev/random device for SSLRANDOMSEED which blocks the read(2) call until enough
entropy is available to service the request. More information is available in the reference manual for the SSLRAN-
DOMSEED directive.

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 219

What SSL Ciphers are supported by mod _ssl?

Usually, any SSL ciphers supported by the version of OpenSSL in use, are also supported by MOD_SSL. Which ciphers
are available can depend on the way you built OpenSSL. Typically, at least the following ciphers are supported:

1. RC4 with SHA1
2. AES with SHA1

3. Triple-DES with SHA1

To determine the actual list of ciphers available, you should run the following:

$ openssl ciphers -v ‘

Why do I get “no shared cipher” errors, when trying to use Anonymous Diffie-Hellman (ADH) ciphers?

By default, OpenSSL does not allow ADH ciphers, for security reasons. Please be sure you are aware of the potential
side-effects if you choose to enable these ciphers.

In order to use Anonymous Diffie-Hellman (ADH) ciphers, you must build OpenSSL with “~DSSL_ALLOW_ADH",
and then add “ADH” into your SSLCIPHERSUITE.

Why do I get a ’no shared ciphers’ error when connecting to my newly installed server?

Either you have made a mistake with your SSLCIPHERSUITE directive (compare it with the pre-configured example
in extra/httpd-ssl.conf) or you chose to use DSA/DH algorithms instead of RSA when you generated your
private key and ignored or overlooked the warnings. If you have chosen DSA/DH, then your server cannot communi-
cate using RSA-based SSL ciphers (at least until you configure an additional RSA-based certificate/key pair). Modern
browsers like NS or IE can only communicate over SSL using RSA ciphers. The result is the "no shared ciphers"
error. To fix this, regenerate your server certificate/key pair, using the RSA algorithm.

Why can’t I use SSL with name-based/non-IP-based virtual hosts?

The reason is very technical, and a somewhat "chicken and egg" problem. The SSL protocol layer stays below the
HTTP protocol layer and encapsulates HTTP. When an SSL connection (HTTPS) is established Apache/mod_ssl has
to negotiate the SSL protocol parameters with the client. For this, mod_ssl has to consult the configuration of the
virtual server (for instance it has to look for the cipher suite, the server certificate, etc.). But in order to go to the
correct virtual server Apache has to know the Host HTTP header field. To do this, the HTTP request header has to
be read. This cannot be done before the SSL handshake is finished, but the information is needed in order to complete
the SSL handshake phase. See the next question for how to circumvent this issue.

Note that if you have a wildcard SSL certificate, or a certificate that has multiple hostnames on it using subjectAltName
fields, you can use SSL on name-based virtual hosts without further workarounds.

Is it possible to use Name-Based Virtual Hosting to identify different SSL virtual hosts?

Name-Based Virtual Hosting is a very popular method of identifying different virtual hosts. It allows you to use the
same [P address and the same port number for many different sites. When people move on to SSL, it seems natural to
assume that the same method can be used to have lots of different SSL virtual hosts on the same server.

220 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

It is possible, but only if using a 2.2.12 or later web server, built with 0.9.8j or later OpenSSL. This is because it
requires a feature that only the most recent revisions of the SSL specification added, called Server Name Indication
(SNI).

Note that if you have a wildcard SSL certificate, or a certificate that has multiple hostnames on it using subjectAltName
fields, you can use SSL on name-based virtual hosts without further workarounds.

The reason is that the SSL protocol is a separate layer which encapsulates the HTTP protocol. So the SSL session is
a separate transaction, that takes place before the HTTP session has begun. The server receives an SSL request on IP
address X and port Y (usually 443). Since the SSL request did not contain any Host: field, the server had no way to
decide which SSL virtual host to use. Usually, it just used the first one it found which matched the port and IP address
specified.

If you are using a version of the web server and OpenSSL that support SNI, though, and the client’s browser also
supports SNI, then the hostname is included in the original SSL request, and the web server can select the correct SSL
virtual host.

You can, of course, use Name-Based Virtual Hosting to identify many non-SSL virtual hosts (all on port 80, for
example) and then have a single SSL virtual host (on port 443). But if you do this, you must make sure to put the
non-SSL port number on the Name VirtualHost directive, e.g.

NameVirtualHost 192.168.1.1:80

Other workaround solutions include:

Using separate IP addresses for different SSL hosts. Using different port numbers for different SSL hosts.

How do I get SSL compression working?

Although SSL compression negotiation was defined in the specification of SSLv2 and TLS, it took until May 2004 for
RFC 3749 to define DEFLATE as a negotiable standard compression method.

OpenSSL 0.9.8 started to support this by default when compiled with the z1ib option. If both the client and the
server support compression, it will be used. However, most clients still try to initially connect with an SSLv2 Hello.
As SSLv2 did not include an array of preferred compression algorithms in its handshake, compression cannot be
negotiated with these clients. If the client disables support for SSLv2, either an SSLv3 or TLS Hello may be sent,
depending on which SSL library is used, and compression may be set up. You can verify whether clients make use of
SSL compression by logging the ${SSL_COMPRESS_METHOD }x variable.

When I use Basic Authentication over HTTPS the lock icon in Netscape browsers stays unlocked when the
dialog pops up. Does this mean the username/password is being sent unencrypted?

No, the username/password is transmitted encrypted. The icon in Netscape browsers is not actually synchronized with
the SSL/TLS layer. It only toggles to the locked state when the first part of the actual webpage data is transferred, which
may confuse people. The Basic Authentication facility is part of the HTTP layer, which is above the SSL/TLS layer
in HTTPS. Before any HTTP data communication takes place in HTTPS, the SSL/TLS layer has already completed
its handshake phase, and switched to encrypted communication. So don’t be confused by this icon.

Why do I get I/O errors when connecting via HTTPS to an Apache+mod_ssl server with older versions of
Microsoft Internet Explorer (MSIE)?

The first reason is that the SSL implementation in some MSIE versions has some subtle bugs related to the HTTP
keep-alive facility and the SSL close notify alerts on socket connection close. Additionally the interaction between
SSL and HTTP/1.1 features are problematic in some MSIE versions. You can work around these problems by forcing

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 221

Apache not to use HTTP/1.1, keep-alive connections or send the SSL close notify messages to MSIE clients. This can
be done by using the following directive in your SSL-aware virtual host section:

SetEnvIf User-Agent "MSIE [2-5]" \
nokeepalive ssl-unclean-shutdown \
downgrade—-1.0 force-response-1.0

Further, some MSIE versions have problems with particular ciphers. Unfortunately, it is not possible to implement a
MSIE-specific workaround for this, because the ciphers are needed as early as the SSL handshake phase. So a MSIE-
specific SETENVIF won’t solve these problems. Instead, you will have to make more drastic adjustments to the global
parameters. Before you decide to do this, make sure your clients really have problems. If not, do not make these
changes - they will affect all your clients, MSIE or otherwise.

How do I enable TLS-SRP?

TLS-SRP (Secure Remote Password key exchange for TLS, specified in RFC 5054) can supplement or replace certifi-
cates in authenticating an SSL connection. To use TLS-SRP, set the SSLSRPVERIFIERFILE directive to point to an
OpenSSL SRP verifier file. To create the verifier file, use the openss1 tool:

openssl srp -srpvfile passwd.srpv —add username

After creating this file, specify it in the SSL server configuration:

SSLSRPVerifierFile /path/to/passwd.srpv

To force clients to use non-certificate TLS-SRP cipher suites, use the following directive:

SSLCipherSuite "!DSS:!aRSA:SRP"

Why do I get handshake failures with Java-based clients when using a certificate with more than 1024 bits?

Beginning with version 2.5.0-dev as of 2013-09-29, MOD_SSL will use DH parameters which include primes with
lengths of more than 1024 bits. Java 7 and earlier limit their support for DH prime sizes to a maximum of 1024 bits,
however.

If your Java-based client aborts with exceptions such as java.lang.RuntimeException: Could not
generate DH keypair and java.security.InvalidAlgorithmParameterException: Prime
size must be multiple of 64, and can only range from 512 to 1024 (inclusive),
and httpd logs tlsvl alert internal error (SSL alert number 80) (at LOGLEVEL info or
higher), you can either rearrange mod_ssl’s cipher list with SSLCIPHERSUITE (possibly in conjunction with
SSLHONORCIPHERORDER), or you can use custom DH parameters with a 1024-bit prime, which will always have
precedence over any of the built-in DH parameters.

To generate custom DH parameters, use the openssl dhparam 1024 command. Alternatively, you can use the
following standard 1024-bit DH parameters from RFC 24097, section 6.2:

http://www.ietf.org/rfc/rfc2409.txt

http://www.ietf.org/rfc/rfc2409.txt

222 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

MIGHAOGBAP//////////yQ/aoiFowjTExmKLgNwc0SkCTgiKZ8x0Agu+pjsTmyJR
Sgh5733jQE3e+VGbPNOKMbMCsKbfJfFDAP4TVtbVHCReSFtXZiXn7G9EXC6aY37WsL
/1y29Rha37ed4a/taiz+1rp8kEXxLH+ZJIKGZRT0ZTgE//////////AgEC

Add the custom parameters including the "BEGIN DH PARAMETERS" and "END DH PARAMETERS" lines to
the end of the first certificate file you have configured using the SSLCERTIFICATEFILE directive.
mod _ssl Support

e What information resources are available in case of mod_ssl problems?

e What support contacts are available in case of mod_ssl problems?

What information should I provide when writing a bug report?

I had a core dump, can you help me?

How do I get a backtrace, to help find the reason for my core dump?

What information resources are available in case of mod _ssl problems?

The following information resources are available. In case of problems you should search here first.

Answers in the User Manual’s F.A.Q. List (this) http://httpd.apache.org/docs/trunk/ssl/ssl_faq.htmI®
First check the F.A.Q. (this text). If your problem is a common one, it may have been answered several times
before, and been included in this doc.

What support contacts are available in case of mod_ssl problems?

The following lists all support possibilities for mod_ssl, in order of preference. Please go through these possibilities in
this order - don’t just pick the one you like the look of.

1. Send a Problem Report to the Apache httpd Users Support Mailing List

users @httpd.apache.org’
This is the second way of submitting your problem report. Again, you must subscribe to the list first, but you
can then easily discuss your problem with the whole Apache httpd user community.

2. Write a Problem Report in the Bug Database

http://httpd.apache.org/bug_report.html'®
This is the last way of submitting your problem report. You should only do this if you’ve already posted to the
mailing lists, and had no success. Please follow the instructions on the above page carefully.

8http://httpd.apache.org/docs/trunk/ssl/ssl_faq.html
9mailto:users @httpd.apache.org
10http://httpd.apache.org/bug_report.html

http://httpd.apache.org/docs/trunk/ssl/ssl_faq.html
mailto:users@httpd.apache.org
http://httpd.apache.org/bug_report.html

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 223

What information should I provide when writing a bug report?

You should always provide at least the following information:

Apache httpd and OpenSSL version information The Apache version can be determined by running httpd -v.
The OpenSSL version can be determined by running openssl version. Alternatively, if you have Lynx
installed, you can run the command lynx -mime_header http://localhost/ | grep Server
to gather this information in a single step.

The details on how you built and installed Apache httpd and OpenSSL For this you can provide a logfile of your
terminal session which shows the configuration and install steps. If this is not possible, you should at least
provide the configure command line you used.

In case of core dumps please include a Backtrace If your Apache httpd dumps its core, please attach a stack-frame
“backtrace” (see below for information on how to get this). This information is required in order to find a reason
for your core dump.

A detailed description of your problem Don’t laugh, we really mean it! Many problem reports don’t include a
description of what the actual problem is. Without this, it’s very difficult for anyone to help you. So, it’s in your
own interest (you want the problem be solved, don’t you?) to include as much detail as possible, please. Of
course, you should still include all the essentials above too.

I had a core dump, can you help me?

In general no, at least not unless you provide more details about the code location where Apache dumped core. What
is usually always required in order to help you is a backtrace (see next question). Without this information it is mostly
impossible to find the problem and help you in fixing it.

How do I get a backtrace, to help find the reason for my core dump?

Following are the steps you will need to complete, to get a backtrace:

1. Make sure you have debugging symbols available, at least in Apache. On platforms where you use GCC/GDB,
you will have to build Apache+mod_ssl with “OPTIM="-g —-ggdb3"” to get this. On other platforms at least
“OPTIM="-g"” is needed.

2. Start the server and try to reproduce the core-dump. For this you may want to use a directive like
“CoreDumpDirectory /tmp” to make sure that the core-dump file can be written. This should result
ina /tmp/core or /tmp/httpd.core file. If you don’t get one of these, try running your server under a
non-root UID. Many modern kernels do not allow a process to dump core after it has done a setuid () (unless
it does an exec ()) for security reasons (there can be privileged information left over in memory). If necessary,
you canrun /path/to/httpd —-X manually to force Apache to not fork.

3. Analyze the core-dump. For this, run gdb /path/to/httpd /tmp/httpd.core orasimilar command.
In GDB, all you have to do then is to enter bt, and voila, you get the backtrace. For other debuggers consult
your local debugger manual.

224 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Chapter 6

Guides, Tutorials, and HowTos

225

226 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

6.1 How-To / Tutorials

How-To / Tutorials

Authentication and Authorization Authentication is any process by which you verify that someone is who they
claim they are. Authorization is any process by which someone is allowed to be where they want to go, or to
have information that they want to have.

See: Authentication, Authorization (p. 227)

Access Control Access control refers to the process of restricting, or granting access to a resource based on arbitrary
criteria. There are a variety of different ways that this can be accomplished.

See: Access Control (p. 234)

Dynamic Content with CGI The CGI (Common Gateway Interface) defines a way for a web server to interact with
external content-generating programs, which are often referred to as CGI programs or CGI scripts. It is a simple
way to put dynamic content on your web site. This document will be an introduction to setting up CGI on your
Apache web server, and getting started writing CGI programs.

See: CGI: Dynamic Content (p. 236)

.htaccessfiles .htaccess files provide a way to make configuration changes on a per-directory basis. A file,
containing one or more configuration directives, is placed in a particular document directory, and the directives
apply to that directory, and all subdirectories thereof.

See: .htaccess files (p. 249)

HTTP/2 with httpd HTTP/2 is the evolution of the world’s most successful application layer protocol, HTTP. It
focuses on making more efficient use of network resources without changing the semantics of HTTP. This guide
explains how HTTP/2 is implemented in httpd, showing basic configurations tips and best practices.

See: HTTP/2 guide (p. ??)

Introduction to Server Side Includes SSI (Server Side Includes) are directives that are placed in HTML pages, and
evaluated on the server while the pages are being served. They let you add dynamically generated content to an
existing HTML page, without having to serve the entire page via a CGI program, or other dynamic technology.

See: Server Side Includes (SSI) (p. 243)

Per-user web directories On systems with multiple users, each user can be permitted to have a web site in their home
directory using the USERDIR directive. Visitors to a URL http://example.com/ username/ will get
content out of the home directory of the user "username", out of the subdirectory specified by the USERDIR
directive.

See: User web directories (public_html) (p. 258)

Reverse Proxy guide Apache httpd has extensive capabilities as a reverse proxy server using the PROXYPASS direc-
tive as well as BALANCERMEMBER to create sophisticated reverse proxying implementations which provide for
high-availability, load balancing and failover, cloud-based clustering and dynamic on-the-fly reconfiguration.

See: Reverse proxy guide (p. 2?)

6.2. AUTHENTICATION AND AUTHORIZATION 227
6.2 Authentication and Authorization

Authentication is any process by which you verify that someone is who they claim they are. Authorization is any
process by which someone is allowed to be where they want to go, or to have information that they want to have.

For general access control, see the Access Control How-To (p. 234) .

Related Modules and Directives

There are three types of modules involved in the authentication and authorization process. You will usually need to
choose at least one module from each group.
e Authentication type (see the AUTHTYPE directive)

— MOD_AUTH_BASIC
— MOD_AUTH_DIGEST

e Authentication provider (see the AUTHBASICPROVIDER and AUTHDIGESTPROVIDER directives)

MOD_AUTHN_ANON
MOD_AUTHN_DBD

— MOD_AUTHN_DBM
MOD_AUTHN_FILE
MOD_AUTHNZ_LDAP

— MOD_AUTHN_SOCACHE

e Authorization (see the REQUIRE directive)

— MOD_AUTHNZ_LDAP

— MOD_AUTHZ_DBD

— MOD_AUTHZ_DBM

— MOD_AUTHZ_GROUPFILE
— MOD_AUTHZ_HOST

— MOD_AUTHZ_OWNER

— MOD_AUTHZ_USER

In addition to these modules, there are also MOD_AUTHN_CORE and MOD_AUTHZ_CORE. These modules implement
core directives that are core to all auth modules.

The module MOD_AUTHNZ_LDAP is both an authentication and authorization provider. The module
MOD_AUTHZ_HOST provides authorization and access control based on hostname, IP address or characteristics of
the request, but is not part of the authentication provider system. For backwards compatibility with the mod_access,
there is a new module MOD_ACCESS_COMPAT.

You probably also want to take a look at the Access Control (p. 234) howto, which discusses the various ways to
control access to your server.

Introduction

If you have information on your web site that is sensitive or intended for only a small group of people, the techniques
in this article will help you make sure that the people that see those pages are the people that you wanted to see them.

This article covers the "standard" way of protecting parts of your web site that most of you are going to use.

228 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

i Note:

If your data really needs to be secure, consider using MOD_SSL in addition to any authentica-
tion.

The Prerequisites

The directives discussed in this article will need to go either in your main server configuration file (typically in a
<DIRECTORY > section), or in per-directory configuration files (. htaccess files).

If you plan to use . htaccess files, you will need to have a server configuration that permits putting authentication
directives in these files. This is done with the ALLOWOVERRIDE directive, which specifies which directives, if any,
may be put in per-directory configuration files.

Since we’re talking here about authentication, you will need an ALLOWOVERRIDE directive like the following:
AllowOverride AuthConfig

Or, if you are just going to put the directives directly in your main server configuration file, you will of course need to
have write permission to that file.

And you’ll need to know a little bit about the directory structure of your server, in order to know where some files are
kept. This should not be terribly difficult, and I’1l try to make this clear when we come to that point.

You will also need to make sure that the modules MOD_AUTHN_CORE and MOD_AUTHZ_CORE have either been built
into the httpd binary or loaded by the httpd.conf configuration file. Both of these modules provide core directives and
functionality that are critical to the configuration and use of authentication and authorization in the web server.

Getting it working

Here’s the basics of password protecting a directory on your server.

First, you need to create a password file. Exactly how you do this will vary depending on what authentication provider
you have chosen. More on that later. To start with, we’ll use a text password file.

This file should be placed somewhere not accessible from the web. This is so that folks cannot download the password
file. For example, if your documents are served out of /usr/local/apache/htdocs, you might want to put the
password file(s) in /usr/local/apache/passwd.

To create the file, use the htpasswd utility that came with Apache. This will be located in the bin directory of
wherever you installed Apache. If you have installed Apache from a third-party package, it may be in your execution
path.

To create the file, type:

htpasswd -c /usr/local/apache/passwd/passwords rbowen

htpasswd will ask you for the password, and then ask you to type it again to confirm it:

htpasswd -c /usr/local/apache/passwd/passwords rbowen
New password: mypassword

Re-type new password: mypassword

Adding password for user rbowen

6.2. AUTHENTICATION AND AUTHORIZATION 229

If htpasswd is not in your path, of course you’ll have to type the full path to the file to get it to run. With a default
installation, it’s located at /usr/local/apache2/bin/htpasswd

Next, you’ll need to configure the server to request a password and tell the server which users are allowed access.
You can do this either by editing the httpd.conf file or using an .htaccess file. For example, if you wish
to protect the directory /usr/local/apache/htdocs/secret, you can use the following directives, either
placed in the file /usr/local/apache/htdocs/secret/.htaccess, or placed in httpd. conf inside a
<Directory "/usr/local/apache/htdocs/secret" > section.

AuthType Basic

AuthName "Restricted Files"

(Following line optional)

AuthBasicProvider file

AuthUserFile "/usr/local/apache/passwd/passwords"
Require user rbowen

Let’s examine each of those directives individually. The AUTHTYPE directive selects that method that is used to au-
thenticate the user. The most common method is Basic, and this is the method implemented by MOD_AUTH_BASIC.
It is important to be aware, however, that Basic authentication sends the password from the client to the server un-
encrypted. This method should therefore not be used for highly sensitive data, unless accompanied by MOD_SSL.
Apache supports one other authentication method: AuthType Digest. This method is implemented by
MOD_AUTH_DIGEST and was intended to be more secure. This is no longer the case and the connection should be
encrypted with MOD_SSL instead.

The AUTHNAME directive sets the Realm to be used in the authentication. The realm serves two major functions.
First, the client often presents this information to the user as part of the password dialog box. Second, it is used by the
client to determine what password to send for a given authenticated area.

So, for example, once a client has authenticated in the "Restricted Files" area, it will automatically retry the
same password for any area on the same server that is marked with the "Restricted Files" Realm. Therefore,
you can prevent a user from being prompted more than once for a password by letting multiple restricted areas share
the same realm. Of course, for security reasons, the client will always need to ask again for the password whenever
the hostname of the server changes.

The AUTHBASICPROVIDER is, in this case, optional, since file is the default value for this directive. You’ll
need to use this directive if you are choosing a different source for authentication, such as MOD_AUTHN_DBM or
MOD_AUTHN_DBD.

The AUTHUSERFILE directive sets the path to the password file that we just created with ht passwd. If you have a
large number of users, it can be quite slow to search through a plain text file to authenticate the user on each request.
Apache also has the ability to store user information in fast database files. The MOD_AUTHN_DBM module provides
the AUTHDBMUSERFILE directive. These files can be created and manipulated with the dbmmanage and htdbm
programs. Many other types of authentication options are available from third party modules in the Apache Modules
Database'.

Finally, the REQUIRE directive provides the authorization part of the process by setting the user that is allowed to
access this region of the server. In the next section, we discuss various ways to use the REQUIRE directive.

Letting more than one person in

The directives above only let one person (specifically someone with a username of rbowen) into the directory. In
most cases, you’ll want to let more than one person in. This is where the AUTHGROUPFILE comes in.

Thttp://modules.apache.org/

http://modules.apache.org/

230 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

If you want to let more than one person in, you’ll need to create a group file that associates group names with a list of
users in that group. The format of this file is pretty simple, and you can create it with your favorite editor. The contents
of the file will look like this:

GroupName: rbowen dpitts sungo rshersey

That’s just a list of the members of the group in a long line separated by spaces.

To add a user to your already existing password file, type:

htpasswd /usr/local/apache/passwd/passwords dpitts ‘

You’ll get the same response as before, but it will be appended to the existing file, rather than creating a new file. (It’s
the —c that makes it create a new password file).

Now, you need to modify your . htaccess file to look like the following:

AuthType Basic

AuthName "By Invitation Only"

Optional line:

AuthBasicProvider file

AuthUserFile "/usr/local/apache/passwd/passwords"
AuthGroupFile "/usr/local/apache/passwd/groups"
Require group GroupName

Now, anyone that is listed in the group GroupName, and has an entry in the password file, will be let in, if they
type the correct password.

There’s another way to let multiple users in that is less specific. Rather than creating a group file, you can just use the
following directive:

Require valid-user

Using that rather than the Require user rbowen line will allow anyone in that is listed in the password file,
and who correctly enters their password. You can even emulate the group behavior here, by just keeping a separate
password file for each group. The advantage of this approach is that Apache only has to check one file, rather than
two. The disadvantage is that you have to maintain a bunch of password files, and remember to reference the right one
in the AUTHUSERFILE directive.

Possible problems

Because of the way that Basic authentication is specified, your username and password must be verified every time
you request a document from the server. This is even if you’re reloading the same page, and for every image on the
page (if they come from a protected directory). As you can imagine, this slows things down a little. The amount that
it slows things down is proportional to the size of the password file, because it has to open up that file, and go down
the list of users until it gets to your name. And it has to do this every time a page is loaded.

A consequence of this is that there’s a practical limit to how many users you can put in one password file. This limit
will vary depending on the performance of your particular server machine, but you can expect to see slowdowns once
you get above a few hundred entries, and may wish to consider a different authentication method at that time.

6.2. AUTHENTICATION AND AUTHORIZATION 231

Alternate password storage

Because storing passwords in plain text files has the above problems, you may wish to store your passwords somewhere
else, such as in a database.

MOD_AUTHN_DBM and MOD_AUTHN_DBD are two modules which make this possible. Rather than selecting
AUTHBASICPROVIDER file, instead you can choose dbm or dbd as your storage format.

To select a dbm file rather than a text file, for example:

<Directory "/www/docs/private">
AuthName "Private"
AuthType Basic
AuthBasicProvider dbm
AuthDBMUserFile "/www/passwords/passwd.dbm"
Require valid-user
</Directory>

Other options are available. Consult the MOD_AUTHN_DBM documentation for more details.

Using multiple providers

With the introduction of the new provider based authentication and authorization architecture, you are no longer locked
into a single authentication or authorization method. In fact any number of the providers can be mixed and matched to
provide you with exactly the scheme that meets your needs. In the following example, both the file and LDAP based
authentication providers are being used.

<Directory "/www/docs/private">
AuthName "Private"
AuthType Basic
AuthBasicProvider file ldap
AuthUserFile "/usr/local/apache/passwd/passwords"
AuthLDAPURL ldap://ldaphost/o=yourorg
Require valid-user
</Directory>

In this example the file provider will attempt to authenticate the user first. If it is unable to authenticate the user, the
LDAP provider will be called. This allows the scope of authentication to be broadened if your organization implements
more than one type of authentication store. Other authentication and authorization scenarios may include mixing one
type of authentication with a different type of authorization. For example, authenticating against a password file yet
authorizing against an LDAP directory.

Just as multiple authentication providers can be implemented, multiple authorization methods can also be used. In this
example both file group authorization as well as LDAP group authorization is being used.

<Directory "/www/docs/private">
AuthName "Private"
AuthType Basic
AuthBasicProvider file
AuthUserFile "/usr/local/apache/passwd/passwords"
AUuthLDAPURL ldap://ldaphost/o=yourorg
AuthGroupFile "/usr/local/apache/passwd/groups"
Require group GroupName
Require ldap-group cn=mygroup,o=yourorg
</Directory>

232 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

To take authorization a little further, authorization container directives such as <REQUIREALL> and <REQUIRE-
ANY> allow logic to be applied so that the order in which authorization is handled can be completely controlled
through the configuration. See Authorization Containers (p. 519) for an example of how they may be applied.

Beyond just authorization

The way that authorization can be applied is now much more flexible than just a single check against a single data
store. Ordering, logic and choosing how authorization will be done is now possible.

Applying logic and ordering

Controlling how and in what order authorization will be applied has been a bit of a mystery in the past. In Apache
2.2 a provider-based authentication mechanism was introduced to decouple the actual authentication process from
authorization and supporting functionality. One of the side benefits was that authentication providers could be con-
figured and called in a specific order which didn’t depend on the load order of the auth module itself. This same
provider based mechanism has been brought forward into authorization as well. What this means is that the REQUIRE
directive not only specifies which authorization methods should be used, it also specifies the order in which they are
called. Multiple authorization methods are called in the same order in which the REQUIRE directives appear in the
configuration.

With the introduction of authorization container directives such as <REQUIREALL> and <REQUIREANY>, the
configuration also has control over when the authorization methods are called and what criteria determines when
access is granted. See Authorization Containers (p. 519) for an example of how they may be used to express complex
authorization logic.

By default all REQUIRE directives are handled as though contained within a <REQUIREANY > container directive. In
other words, if any of the specified authorization methods succeed, then authorization is granted.

Using authorization providers for access control

Authentication by username and password is only part of the story. Frequently you want to let people in based on
something other than who they are. Something such as where they are coming from.

The authorization providers all, env, host and ip let you allow or deny access based on other host based criteria
such as host name or ip address of the machine requesting a document.

The usage of these providers is specified through the REQUIRE directive. This directive registers the authorization
providers that will be called during the authorization stage of the request processing. For example:

Require ip address

where address is an IP address (or a partial IP address) or:

Require host domain_name

where domain_name is a fully qualified domain name (or a partial domain name); you may provide multiple addresses
or domain names, if desired.

For example, if you have someone spamming your message board, and you want to keep them out, you could do the

following:

<RequireAll>

Require all granted

Require not ip 10.252.46.165
</RequireAll>

6.2. AUTHENTICATION AND AUTHORIZATION 233

Visitors coming from that address will not be able to see the content covered by this directive. If, instead, you have a
machine name, rather than an IP address, you can use that.

<RequireAll>

Require all granted

Require not host host.example.com
</RequireAll>

And, if you’d like to block access from an entire domain, you can specify just part of an address or domain name:

<RequireAll>
Require all granted
Require not ip 192.168.205
Require not host phishers.example.com moreidiots.example
Require not host ke
</RequireAll>

Using <REQUIREALL> with multiple <REQUIRE>> directives, each negated with not, will only allow access, if all
of negated conditions are true. In other words, access will be blocked, if any of the negated conditions fails.

Access Control backwards compatibility

One of the side effects of adopting a provider based mechanism for authentication is that the previous access control
directives ORDER, ALLOW, DENY and SATISFY are no longer needed. However to provide backwards compatibility
for older configurations, these directives have been moved to the MOD_ACCESS_COMPAT module.

m Note

The directives provided by MOD_ACCESS_COMPAT have been deprecated by
MOD_AUTHZ_HOST. Mixing old directives like ORDER, ALLOW or DENY with new
ones like REQUIRE is technically possible but discouraged. The MOD_ACCESS_COMPAT
module was created to support configurations containing only old directives to facilitate the
2.4 upgrade. Please check the upgrading (p. 2) guide for more information.

Authentication Caching

There may be times when authentication puts an unacceptable load on a provider or on your network. This is most
likely to affect users of MOD_AUTHN_DBD (or third-party/custom providers). To deal with this, HTTPD 2.3/2.4
introduces a new caching provider MOD_AUTHN_SOCACHE to cache credentials and reduce the load on the origin
provider(s).

This may offer a substantial performance boost to some users.

More information

You should also read the documentation for MOD_AUTH_BASIC and MOD_AUTHZ_HOST which contain some more
information about how this all works. The directive <AUTHNPROVIDERALIAS> can also help in simplifying certain
authentication configurations.

The various ciphers supported by Apache for authentication data are explained in Password Encryptions (p. 371) .

And you may want to look at the Access Control (p. 234) howto, which discusses a number of related topics.

234 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS
6.3 Access Control

Access control refers to any means of controlling access to any resource. This is separate from authentication and
authorization (p. 227) .

Related Modules and Directives

Access control can be done by several different modules. The most important of these are MOD_AUTHZ_CORE and
MOD_AUTHZ_HOST. Also discussed in this document is access control using MOD_REWRITE.

Access control by host

If you wish to restrict access to portions of your site based on the host address of your visitors, this is most easily done
using MOD_AUTHZ_HOST.

The REQUIRE provides a variety of different ways to allow or deny access to resources. In conjunction with the
REQUIREALL, REQUIREANY, and REQUIRENONE directives, these requirements may be combined in arbitrarily
complex ways, to enforce whatever your access policy happens to be.

m The ALLOW, DENY, and ORDER directives, provided by MOD_ACCESS_COMPAT, are depre-
cated and will go away in a future version. You should avoid using them, and avoid outdated
tutorials recommending their use.

The usage of these directives is:

Require host address
Require ip ip.address

In the first form, address is a fully qualified domain name (or a partial domain name); you may provide multiple
addresses or domain names, if desired.

In the second form, ip.address is an IP address, a partial IP address, a network/netmask pair, or a network/nnn CIDR
specification. Either IPv4 or IPv6 addresses may be used.

See the mod_authz_host documentation (p. 536) for further examples of this syntax.

You can insert not to negate a particular requirement. Note, that since a not is a negation of a value, it cannot be
used by itself to allow or deny a request, as not true does not constitute false. Thus, to deny a visit using a negation,
the block must have one element that evaluates as true or false. For example, if you have someone spamming your
message board, and you want to keep them out, you could do the following:

<RequireAll>

Require all granted

Require not ip 10.252.46.165
</RequireAll>

Visitors coming from that address (10.252.46.165) will not be able to see the content covered by this directive.
If, instead, you have a machine name, rather than an IP address, you can use that.

Require not host host.example.com

And, if you’d like to block access from an entire domain, you can specify just part of an address or domain name:

6.3. ACCESS CONTROL 235

Require not ip 192.168.205
Require not host phishers.example.com moreidiots.example
Require not host gov

Use of the REQUIREALL, REQUIREANY, and REQUIRENONE directives may be used to enforce more complex sets
of requirements.

Access control by arbitrary variables

Using the <IF>, you can allow or deny access based on arbitrary environment variables or request header values. For
example, to deny access based on user-agent (the browser type) you might do the following:

<If "${HTTP_USER_AGENT} == ’'BadBot’">
Require all denied
</I1f>

Using the REQUIRE expr syntax, this could also be written as:

Require expr %{HTTP_USER_AGENT} != ’BadBot’

:/> Warning:

Access control by User—Agent is an unreliable technique, since the User—Agent header
can be set to anything at all, at the whim of the end user.

See the expressions document (p. 99) for a further discussion of what expression syntaxes and variables are available
to you.

Access control with mod_rewrite

The [F] REWRITERULE flag causes a 403 Forbidden response to be sent. Using this, you can deny access to a
resource based on arbitrary criteria.

For example, if you wish to block access to a resource between 8pm and 7am, you can do this using MOD_REWRITE.

RewriteEngine On

RewriteCond "%{TIME_HOUR}" ">=20" [OR]
RewriteCond "%{TIME_HOUR}" "<07"
RewriteRule "~ /fridge" n_mn [F]

This will return a 403 Forbidden response for any request after 8pm or before 7am. This technique can be used for any
criteria that you wish to check. You can also redirect, or otherwise rewrite these requests, if that approach is preferred.

The <IF> directive, added in 2.4, replaces many things that MOD_REWRITE has traditionally been used to do, and
you should probably look there first before resorting to mod._rewrite.

More information

The expression engine (p. 99) gives you a great deal of power to do a variety of things based on arbitrary server
variables, and you should consult that document for more detail.

Also, you should read the MOD_AUTHZ_CORE documentation for examples of combining multiple access requirements
and specifying how they interact.

See also the Authentication and Authorization (p. 227) howto.

236 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

6.4 Apache Tutorial: Dynamic Content with CGI

Introduction
Related Modules Related Directives
MOD_ALIAS ADDHANDLER
MOD_CGI OPTIONS

SCRIPTALIAS

The CGI (Common Gateway Interface) defines a way for a web server to interact with external content-generating
programs, which are often referred to as CGI programs or CGI scripts. It is the simplest, and most common, way to
put dynamic content on your web site. This document will be an introduction to setting up CGI on your Apache web
server, and getting started writing CGI programs.

Configuring Apache to permit CGI

In order to get your CGI programs to work properly, you’ll need to have Apache configured to permit CGI execution.
There are several ways to do this.

m Note: If Apache has been built with shared module support you need to ensure that the module
is loaded; in your httpd. conf you need to make sure the LOADMODULE directive has not
been commented out. A correctly configured directive may look like this:

LoadModule cgi_module modules/mod_cgi.so

ScriptAlias

The SCRIPTALIAS

directive tells Apache that a particular directory is set aside for CGI programs. Apache will assume that every file in
this directory is a CGI program, and will attempt to execute it, when that particular resource is requested by a client.

The SCRIPTALIAS directive looks like:
ScriptAlias "/cgi-bin/" "/usr/local/apache2/cgi-bin/"

The example shown is from your default httpd.conf configuration file, if you installed Apache in the default
location. The SCRIPTALIAS directive is much like the ALIAS directive, which defines a URL prefix that is to
mapped to a particular directory. ALIAS and SCRIPTALIAS are usually used for directories that are outside of
the DOCUMENTROOT directory. The difference between ALIAS and SCRIPTALIAS is that SCRIPTALIAS has the
added meaning that everything under that URL prefix will be considered a CGI program. So, the example above
tells Apache that any request for a resource beginning with /cgi-bin/ should be served from the directory
/usr/local/apache2/cgi-bin/, and should be treated as a CGI program.

For example, if the URL http://www.example.com/cgi-bin/test.pl is requested, Apache will attempt
to execute the file /usr/local/apache2/cgi-bin/test.pl and return the output. Of course, the file will
have to exist, and be executable, and return output in a particular way, or Apache will return an error message.

CGI outside of ScriptAlias directories

CGI programs are often restricted to SCRIPTALIAS ed directories for security reasons. In this way, administrators can
tightly control who is allowed to use CGI programs. However, if the proper security precautions are taken, there is no

6.4. APACHE TUTORIAL: DYNAMIC CONTENT WITH CGI 237

reason why CGI programs cannot be run from arbitrary directories. For example, you may wish to let users have web
content in their home directories with the USERDIR directive. If they want to have their own CGI programs, but don’t
have access to the main cgi-bin directory, they will need to be able to run CGI programs elsewhere.

There are two steps to allowing CGI execution in an arbitrary directory. First, the cgi-script handler must be
activated using the ADDHANDLER or SETHANDLER directive. Second, ExecCGI must be specified in the OPTIONS
directive.

Explicitly using Options to permit CGI execution

You could explicitly use the OPTIONS directive, inside your main server configuration file, to specify that CGI execu-
tion was permitted in a particular directory:

<Directory "/usr/local/apache2/htdocs/somedir">
Options +ExecCGI
</Directory>

The above directive tells Apache to permit the execution of CGI files. You will also need to tell the server what files
are CGI files. The following ADDHANDLER directive tells the server to treat all files with the cgi or p1l extension as
CGI programs:

AddHandler cgi-script .cgi .pl

.htaccess files

The .htaccess tutorial (p. 249) shows how to activate CGI programs if you do not have access to httpd. conf.

User Directories

To allow CGI program execution for any file ending in . cgi in users’ directories, you can use the following configu-
ration.

<Directory "/home/*/public_html">
Options +ExecCGI
AddHandler cgi-script .cgi
</Directory>

If you wish designate a cgi—bin subdirectory of a user’s directory where everything will be treated as a CGI program,
you can use the following.

<Directory "/home/x/public_html/cgi-bin">
Options ExecCGI
SetHandler cgi-script

</Directory>

Writing a CGI program

There are two main differences between “regular” programming, and CGI programming.

First, all output from your CGI program must be preceded by a MIME-type header. This is HTTP header that tells the
client what sort of content it is receiving. Most of the time, this will look like:

238 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Content-type: text/html

Secondly, your output needs to be in HTML, or some other format that a browser will be able to display. Most of
the time, this will be HTML, but occasionally you might write a CGI program that outputs a gif image, or other
non-HTML content.

Apart from those two things, writing a CGI program will look a lot like any other program that you might write.

Your first CGI program

The following is an example CGI program that prints one line to your browser. Type in the following, save it to a file
called first .pl, and put it in your cgi-bin directory.

#!/usr/bin/perl
print "Content-type: text/html\n\n";
print "Hello, World.";

Even if you are not familiar with Perl, you should be able to see what is happening here. The first line tells Apache (or
whatever shell you happen to be running under) that this program can be executed by feeding the file to the interpreter
found at the location /usr/bin/perl. The second line prints the content-type declaration we talked about, followed
by two carriage-return newline pairs. This puts a blank line after the header, to indicate the end of the HTTP headers,
and the beginning of the body. The third line prints the string "Hello, World.". And that’s the end of it.

If you open your favorite browser and tell it to get the address

http://www.example.com/cgi-bin/first.pl

or wherever you put your file, you will see the one line Hello, World. appear in your browser window. It’s not
very exciting, but once you get that working, you’ll have a good chance of getting just about anything working.

But it’s still not working!

There are four basic things that you may see in your browser when you try to access your CGI program from the web:

The output of your CGI program Great! That means everything worked fine. If the output is correct, but the
browser is not processing it correctly, make sure you have the correct Content-Type set in your CGI pro-
gram.

The source code of your CGI program or a "POST Method Not Allowed" message That means that you have
not properly configured Apache to process your CGI program. Reread the section on configuring Apache and
try to find what you missed.

A message starting with "Forbidden" That means that there is a permissions problem. Check the Apache error log
and the section below on file permissions.

A message saying "Internal Server Error" If you check the Apache error log, you will probably find that it says
"Premature end of script headers", possibly along with an error message generated by your CGI program. In
this case, you will want to check each of the below sections to see what might be preventing your CGI program
from emitting the proper HTTP headers.

6.4. APACHE TUTORIAL: DYNAMIC CONTENT WITH CGI 239

File permissions

Remember that the server does not run as you. That is, when the server starts up, it is running with the permissions of
an unprivileged user - usually nobody, or www - and so it will need extra permissions to execute files that are owned
by you. Usually, the way to give a file sufficient permissions to be executed by nobody is to give everyone execute
permission on the file:

chmod a+x first.pl

Also, if your program reads from, or writes to, any other files, those files will need to have the correct permissions to
permit this.

Path information and environment

When you run a program from your command line, you have certain information that is passed to the shell without you
thinking about it. For example, you have a PATH, which tells the shell where it can look for files that you reference.

When a program runs through the web server as a CGI program, it may not have the same PATH. Any programs that
you invoke in your CGI program (like sendmail, for example) will need to be specified by a full path, so that the
shell can find them when it attempts to execute your CGI program.

A common manifestation of this is the path to the script interpreter (often per1) indicated in the first line of your CGI
program, which will look something like:

#!/usr/bin/perl

Make sure that this is in fact the path to the interpreter.

m When editing CGI scripts on Windows, end-of-line characters may be appended to the inter-
preter path. Ensure that files are then transferred to the server in ASCII mode. Failure to
do so may result in "Command not found" warnings from the OS, due to the unrecognized
end-of-line character being interpreted as a part of the interpreter filename.

Missing environment variables

If your CGI program depends on non-standard environment variables, you will need to assure that those variables are
passed by Apache.

When you miss HTTP headers from the environment, make sure they are formatted according to RFC 26162, section
4.2: Header names must start with a letter, followed only by letters, numbers or hyphen. Any header violating this rule
will be dropped silently.

Program errors

Most of the time when a CGI program fails, it’s because of a problem with the program itself. This is particularly true
once you get the hang of this CGI stuff, and no longer make the above two mistakes. The first thing to do is to make
sure that your program runs from the command line before testing it via the web server. For example, try:

cd /usr/local/apache2/cgi-bin
./first.pl

2http://tools.ietf.org/html/rfc2616

http://tools.ietf.org/html/rfc2616

240 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

(Do not call the perl interpreter. The shell and Apache should find the interpreter using the path information on the
first line of the script.)

The first thing you see written by your program should be a set of HTTP headers, including the Content-Type, fol-
lowed by a blank line. If you see anything else, Apache will return the Premature end of script headers
error if you try to run it through the server. See Writing a CGI program above for more details.

Error logs

The error logs are your friend. Anything that goes wrong generates message in the error log. You should always look
there first. If the place where you are hosting your web site does not permit you access to the error log, you should
probably host your site somewhere else. Learn to read the error logs, and you’ll find that almost all of your problems
are quickly identified, and quickly solved.

Suexec

The suexec (p. 115) support program allows CGI programs to be run under different user permissions, depending on
which virtual host or user home directory they are located in. Suexec has very strict permission checking, and any
failure in that checking will result in your CGI programs failing with Premature end of script headers.

To check if you are using suexec, run apachectl -V and check for the location of SUEXEC_BIN. If Apache finds
an suexec binary there on startup, suexec will be activated.

Unless you fully understand suexec, you should not be using it. To disable suexec, simply remove (or rename) the
suexec binary pointed to by SUEXEC_BIN and then restart the server. If, after reading about suexec (p. 115) , you
still wish to use it, then run suexec -V to find the location of the suexec log file, and use that log file to find what
policy you are violating.

What’s going on behind the scenes?

As you become more advanced in CGI programming, it will become useful to understand more about what’s happening
behind the scenes. Specifically, how the browser and server communicate with one another. Because although it’s all
very well to write a program that prints "Hello, World.", it’s not particularly useful.

Environment variables

Environment variables are values that float around you as you use your computer. They are useful things like your
path (where the computer searches for the actual file implementing a command when you type it), your username,
your terminal type, and so on. For a full list of your normal, every day environment variables, type env at a command
prompt.

During the CGI transaction, the server and the browser also set environment variables, so that they can communicate
with one another. These are things like the browser type (Netscape, IE, Lynx), the server type (Apache, IIS, WebSite),
the name of the CGI program that is being run, and so on.

These variables are available to the CGI programmer, and are half of the story of the client-server communication.
The complete list of required variables is at Common Gateway Interface RFC>.

This simple Perl CGI program will display all of the environment variables that are being passed around. Two similar
programs are included in the cgi-bin

3http://www.ietf.org/rfc/rfc3875

http://www.ietf.org/rfc/rfc3875

6.4. APACHE TUTORIAL: DYNAMIC CONTENT WITH CGI 241

directory of the Apache distribution. Note that some variables are required, while others are optional, so you may see
some variables listed that were not in the official list. In addition, Apache provides many different ways for you to add
your own environment variables (p. 92) to the basic ones provided by default.

#!/usr/bin/perl
use strict;
use warnings;

print "Content-type: text/html\n\n";
foreach my $key (keys $SENV) {

print "Skey —--> SENV{S$key}
";
}

STDIN and STDOUT

Other communication between the server and the client happens over standard input (STDIN) and standard output
(STDOUT). In normal everyday context, STDIN means the keyboard, or a file that a program is given to act on, and
STDOUT usually means the console or screen.

When you POST a web form to a CGI program, the data in that form is bundled up into a special format and gets
delivered to your CGI program over STDIN. The program then can process that data as though it was coming in from
the keyboard, or from a file

The "special format" is very simple. A field name and its value are joined together with an equals (=) sign, and pairs
of values are joined together with an ampersand (&). Inconvenient characters like spaces, ampersands, and equals
signs, are converted into their hex equivalent so that they don’t gum up the works. The whole data string might look
something like:

name=Rich%20Bowené&city=Lexington&state=KY&sidekick=Squirrel%20Monkey

You’ll sometimes also see this type of string appended to a URL. When that is done, the server puts that string into
the environment variable called QUERY_STRING. That’s called a GET request. Your HTML form specifies whether a
GET or a POST is used to deliver the data, by setting the METHOD attribute in the FORM tag.

Your program is then responsible for splitting that string up into useful information. Fortunately, there are libraries
and modules available to help you process this data, as well as handle other of the aspects of your CGI program.

CGI modules/libraries

When you write CGI programs, you should consider using a code library, or module, to do most of the grunt work for
you. This leads to fewer errors, and faster development.

If you’re writing CGI programs in Perl, modules are available on CPAN*. The most popular module for this purpose
is CGI.pm. You might also consider CGI : : Lite, which implements a minimal set of functionality, which is all you
need in most programs.

If you're writing CGI programs in C, there are a variety of options. One of these is the CGIC library, from
http://www.boutell.com/cgic/.

“http://www.cpan.org/

http://www.cpan.org/

242 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

For more information

The current CGI specification is available in the Common Gateway Interface RFC>.

When you post a question about a CGI problem that you’re having, whether to a mailing list, or to a newsgroup, make
sure you provide enough information about what happened, what you expected to happen, and how what actually
happened was different, what server you’re running, what language your CGI program was in, and, if possible, the
offending code. This will make finding your problem much simpler.

Note that questions about CGI problems should never be posted to the Apache bug database unless you are sure you
have found a problem in the Apache source code.

Shttp://www.ietf.org/rfc/rfc3875

http://www.ietf.org/rfc/rfc3875

6.5. APACHE HTTPD TUTORIAL: INTRODUCTION TO SERVER SIDE INCLUDES 243
6.5 Apache httpd Tutorial: Introduction to Server Side Includes

Server-side includes provide a means to add dynamic content to existing HTML documents.

Introduction
Related Modules Related Directives
MOD_INCLUDE OPTIONS
MOD_CGI XBITHACK
MOD_EXPIRES ADDTYPE

SETOUTPUTFILTER
BROWSERMATCHNOCASE

This article deals with Server Side Includes, usually called simply SSI. In this article, I’ll talk about configuring your
server to permit SSI, and introduce some basic SSI techniques for adding dynamic content to your existing HTML

pages.

In the latter part of the article, we’ll talk about some of the somewhat more advanced things that can be done with SSI,
such as conditional statements in your SSI directives.

What are SSI?

SSI (Server Side Includes) are directives that are placed in HTML pages, and evaluated on the server while the pages
are being served. They let you add dynamically generated content to an existing HTML page, without having to serve
the entire page via a CGI program, or other dynamic technology.

For example, you might place a directive into an existing HTML page, such as:

<!-—#echo var="DATE_LOCAL" -->

And, when the page is served, this fragment will be evaluated and replaced with its value:

Tuesday, 15-Jan-2013 19:28:54 EST

The decision of when to use SSI, and when to have your page entirely generated by some program, is usually a matter
of how much of the page is static, and how much needs to be recalculated every time the page is served. SSI is a great
way to add small pieces of information, such as the current time - shown above. But if a majority of your page is being
generated at the time that it is served, you need to look for some other solution.

Configuring your server to permit SSI

To permit SSI on your server, you must have the following directive either in your httpd.conf file, or in a
.htaccess file:

Options +Includes

This tells Apache that you want to permit files to be parsed for SSI directives. Note that most configurations contain
multiple OPTIONS directives that can override each other. You will probably need to apply the Options to the
specific directory where you want SSI enabled in order to assure that it gets evaluated last.

244 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Not just any file is parsed for SSI directives. You have to tell Apache which files should be parsed. There are two ways
to do this. You can tell Apache to parse any file with a particular file extension, such as . shtml, with the following
directives:

AddType text/html .shtml
AddOutputFilter INCLUDES .shtml

One disadvantage to this approach is that if you wanted to add SSI directives to an existing page, you would have to
change the name of that page, and all links to that page, in order to give it a . shtml extension, so that those directives
would be executed.

The other method is to use the XBITHACK directive:

XBitHack on

XBITHACK tells Apache to parse files for SSI directives if they have the execute bit set. So, to add SSI directives to
an existing page, rather than having to change the file name, you would just need to make the file executable using
chmod.

chmod +x pagename.html

A brief comment about what not to do. You’ll occasionally see people recommending that you just tell Apache to
parse all . html files for SSI, so that you don’t have to mess with . shtml file names. These folks have perhaps not
heard about XBITHACK. The thing to keep in mind is that, by doing this, you’re requiring that Apache read through
every single file that it sends out to clients, even if they don’t contain any SSI directives. This can slow things down
quite a bit, and is not a good idea.

Of course, on Windows, there is no such thing as an execute bit to set, so that limits your options a little.

In its default configuration, Apache does not send the last modified date or content length HTTP headers on SSI pages,
because these values are difficult to calculate for dynamic content. This can prevent your document from being cached,
and result in slower perceived client performance. There are two ways to solve this:

1. Use the XBitHack Full configuration. This tells Apache to determine the last modified date by looking only
at the date of the originally requested file, ignoring the modification date of any included files.

2. Use the directives provided by MOD_EXPIRES to set an explicit expiration time on your files, thereby letting
browsers and proxies know that it is acceptable to cache them.

Basic SSI directives

SSI directives have the following syntax:

<!——#function attribute=value attribute=value ... —-—-—>

It is formatted like an HTML comment, so if you don’t have SSI correctly enabled, the browser will ignore it, but it
will still be visible in the HTML source. If you have SSI correctly configured, the directive will be replaced with its
results.

The function can be one of a number of things, and we’ll talk some more about most of these in the next installment
of this series. For now, here are some examples of what you can do with SSI

6.5. APACHE HTTPD TUTORIAL: INTRODUCTION TO SERVER SIDE INCLUDES 245

Today’s date

<!—-—#echo var="DATE_LOCAL" -->

The echo function just spits out the value of a variable. There are a number of standard variables, which include the
whole set of environment variables that are available to CGI programs. Also, you can define your own variables with
the set function.

If you don’t like the format in which the date gets printed, you can use the config function, with a timefmt
attribute, to modify that formatting.

<!-—#config timefmt="%A %B %d, %Y" -->
Today is <!--#echo var="DATE_LOCAL" -->

Modification date of the file

This document last modified <!--#flastmod file="index.html" -->

This function is also subject to t ime fmt format configurations.

Including the results of a CGI program

This is one of the more common uses of SSI - to output the results of a CGI program, such as everybody’s favorite, a
“hit counter.”

’<!**#include virtual="/cgi-bin/counter.pl" —-->

Additional examples

Following are some specific examples of things you can do in your HTML documents with SSI.

When was this document modified?

Earlier, we mentioned that you could use SSI to inform the user when the document was most recently modified.
However, the actual method for doing that was left somewhat in question. The following code, placed in your HTML
document, will put such a time stamp on your page. Of course, you will have to have SSI correctly enabled, as
discussed above.

<!——#config timefmt="%A %B %d, %Y" -->
This file last modified <!-—-#flastmod file="ssi.shtml" -->

Of course, you will need to replace the ssi.shtml with the actual name of the file that you’re referring to. This can
be inconvenient if you’re just looking for a generic piece of code that you can paste into any file, so you probably want
to use the LAST_MODIFIED variable instead:

<!-—#config timefmt="%D" -->
This file last modified <!--#echo var="LAST MODIFIED" -->

For more details on the t ime fmt format, go to your favorite search site and look for st rft ime. The syntax is the
same.

246 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Including a standard footer

If you are managing any site that is more than a few pages, you may find that making changes to all those pages can
be a real pain, particularly if you are trying to maintain some kind of standard look across all those pages.

Using an include file for a header and/or a footer can reduce the burden of these updates. You just have to make
one footer file, and then include it into each page with the include SSI command. The include function can
determine what file to include with either the £i1le attribute, or the virtual attribute. The £1i1le attribute is a file
path, relative to the current directory. That means that it cannot be an absolute file path (starting with /), nor can it
contain ../ as part of that path. The virtual attribute is probably more useful, and should specify a URL relative to
the document being served. It can start with a /, but must be on the same server as the file being served.

<!—-—#include virtual="/footer.html" —-->

I'll frequently combine the last two things, putting a LAST MODIFIED directive inside a footer file to be included.
SSI directives can be contained in the included file, and includes can be nested - that is, the included file can include
another file, and so on.

What else can I config?

In addition to being able to config the time format, you can also config two other things.

Usually, when something goes wrong with your SSI directive, you get the message

[an error occurred while processing this directive]

If you want to change that message to something else, you can do so with the errmsg attribute to the config
function:

<!-—#config errmsg="[It appears that you don’t know how to use SSI]"
-—>

Hopefully, end users will never see this message, because you will have resolved all the problems with your SSI
directives before your site goes live. (Right?)

And you can config the format in which file sizes are returned with the sizefmt attribute. You can specify bytes
for a full count in bytes, or abbrev for an abbreviated number in Kb or Mb, as appropriate.

Executing commands

I expect that I’1l have an article some time in the coming months about using SSI with small CGI programs. For now,
here’s something else that you can do with the exec function. You can actually have SSI execute a command using
the shell (/bin/sh, to be precise - or the DOS shell, if you’re on Win32). The following, for example, will give you
a directory listing.

<pre>
<!-—f#exec cmd="1s" —-->
</pre>

or, on Windows

6.5. APACHE HTTPD TUTORIAL: INTRODUCTION TO SERVER SIDE INCLUDES 247

<pre>
<!-—-#exec cmd="dir" -->
</pre>

You might notice some strange formatting with this directive on Windows, because the output from di r contains the
string “<dir>" in it, which confuses browsers.

Note that this feature is exceedingly dangerous, as it will execute whatever code happens to be embedded in the
exec tag. If you have any situation where users can edit content on your web pages, such as with a “guestbook”,
for example, make sure that you have this feature disabled. You can allow SSI, but not the exec feature, with the
IncludesNOEXEC argument to the Options directive.

Advanced SSI techniques

In addition to spitting out content, Apache SSI gives you the option of setting variables, and using those variables in
comparisons and conditionals.

Setting variables

Using the set directive, you can set variables for later use. We’ll need this later in the discussion, so we’ll talk about
it here. The syntax of this is as follows:

’<!——#set var="name" value="Rich" -->

In addition to merely setting values literally like that, you can use any other variable, including environment variables
(p- 92) or the variables discussed above (like LAST_MODIFIED, for example) to give values to your variables. You
will specify that something is a variable, rather than a literal string, by using the dollar sign ($) before the name of the
variable.

<!—-—#set var="modified" value="SLAST_MODIFIED" ——>

To put a literal dollar sign into the value of your variable, you need to escape the dollar sign with a backslash.

<!--#set var="cost" value="\$100" -->

Finally, if you want to put a variable in the midst of a longer string, and there’s a chance that the name of the variable
will run up against some other characters, and thus be confused with those characters, you can place the name of the
variable in braces, to remove this confusion. (It’s hard to come up with a really good example of this, but hopefully
you’ll get the point.)

<!--#set var="date" value="${DATE_.LOCAL}_${DATE_GMT}" -->

248 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Conditional expressions

Now that we have variables, and are able to set and compare their values, we can use them to express conditionals. This
lets SSI be a tiny programming language of sorts. MOD_INCLUDE provides an 1 f, elif, else, endif structure for
building conditional statements. This allows you to effectively generate multiple logical pages out of one actual page.

The structure of this conditional construct is:

<!-—#if expr="test_condition" -->
<!-—#elif expr="test_condition" -->
<!-—#else ——>

<!——#endif -->

A test_condition can be any sort of logical comparison - either comparing values to one another, or testing the “truth”
of a particular value. (A given string is true if it is nonempty.) For a full list of the comparison operators available to
you, see the MOD_INCLUDE documentation.

For example, if you wish to customize the text on your web page based on the time of day, you could use the following
recipe, placed in the HTML page:

Good <!--#if expr="%{TIME_HOUR} <12" —-->
morning!

<!--felse -->

afternoon!

<!-—#endif -->

Any other variable (either ones that you define, or normal environment variables) can be used in conditional statements.
See Expressions in Apache HTTP Server (p. 99) for more information on the expression evaluation engine.

With Apache’s ability to set environment variables with the SetEnvIf directives, and other related directives, this
functionality can let you do a wide variety of dynamic content on the server side without resorting a full web applica-
tion.

Conclusion

SSI is certainly not a replacement for CGI, or other technologies used for generating dynamic web pages. But it is a
great way to add small amounts of dynamic content to pages, without doing a lot of extra work.

6.6. APACHE HTTP SERVER TUTORIAL: .HTACCESS FILES 249

6.6 Apache HTTP Server Tutorial: .htaccess files

.htaccess files provide a way to make configuration changes on a per-directory basis.

Jhtaccess files

Related Modules Related Directives
CORE ACCESSFILENAME
MOD_AUTHN_FILE ALLOWOVERRIDE
MOD_AUTHZ_GROUPFILE OPTIONS
MOD_CGI ADDHANDLER
MOD_INCLUDE SETHANDLER
MOD_MIME AUTHTYPE
AUTHNAME
AUTHUSERFILE
AUTHGROUPFILE
REQUIRE

iYou should avoid using . htaccess files completely if you have access to httpd main server
config file. Using .htaccess files slows down your Apache http server. Any directive that
you can include in a . htaccess file is better set in a DIRECTORY block, as it will have the
same effect with better performance.

What they are/How to use them

.htaccess files (or "distributed configuration files") provide a way to make configuration changes on a per-
directory basis. A file, containing one or more configuration directives, is placed in a particular document directory,
and the directives apply to that directory, and all subdirectories thereof.

i Note:

If you want to call your .htaccess file something else, you can change the name of the
file using the ACCESSFILENAME directive. For example, if you would rather call the file
.config then you can put the following in your server configuration file:

AccessFileName ".config"

In general, . htaccess files use the same syntax as the main configuration files (p. 32) . What you can put in these
files is determined by the ALLOWOVERRIDE directive. This directive specifies, in categories, what directives will be
honored if they are found in a . htaccess file. If a directive is permitted in a . htaccess file, the documentation
for that directive will contain an Override section, specifying what value must be in ALLOWOVERRIDE in order for
that directive to be permitted.

For example, if you look at the documentation for the ADDDEFAULTCHARSET directive, you will find that it is
permitted in .htaccess files. (See the Context line in the directive summary.) The Override (p. 377) line reads
FileInfo. Thus, you must have atleast AllowOverride FileInfo in order for this directive to be honored in
.htaccess files.

Example:
Context: (p. 377) server config, virtual host,

directory, .htaccess
Override: (p. 377) FileInfo

250 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

If you are unsure whether a particular directive is permitted in a . htaccess file, look at the documentation for that
directive, and check the Context line for ".htaccess".

When (not) to use .htaccess files

In general, you should only use .htaccess files when you don’t have access to the main server configuration file.
There is, for example, a common misconception that user authentication should always be done in . htaccess files,
and, in more recent years, another misconception that MOD_REWRITE directives must go in . htaccess files. This
is simply not the case. You can put user authentication configurations in the main server configuration, and this is, in
fact, the preferred way to do things. Likewise, mod_rewrite directives work better, in many respects, in the main
server configuration.

.htaccess files should be used in a case where the content providers need to make configuration changes to the
server on a per-directory basis, but do not have root access on the server system. In the event that the server adminis-
trator is not willing to make frequent configuration changes, it might be desirable to permit individual users to make
these changes in .htaccess files for themselves. This is particularly true, for example, in cases where ISPs are
hosting multiple user sites on a single machine, and want their users to be able to alter their configuration.

However, in general, use of . htaccess files should be avoided when possible. Any configuration that you would
consider putting in a .htaccess file, can just as effectively be made in a <DIRECTORY> section in your main
server configuration file.

There are two main reasons to avoid the use of . htaccess files.

The first of these is performance. When ALLOWOVERRIDE is set to allow the use of . htaccess files, httpd will
look in every directory for . htaccess files. Thus, permitting . ht access files causes a performance hit, whether
or not you actually even use them! Also, the . htaccess file is loaded every time a document is requested.

Further note that httpd must look for . htaccess files in all higher-level directories, in order to have a full comple-
ment of directives that it must apply. (See section on how directives are applied.) Thus, if a file is requested out of a
directory /www/htdocs/example, httpd must look for the following files:

/.htaccess
/www/.htaccess
/www/htdocs/.htaccess

/www/htdocs/example/.htaccess

And so, for each file access out of that directory, there are 4 additional file-system accesses, even if none of those files
are present. (Note that this would only be the case if . htaccess files were enabled for /, which is not usually the
case.)

In the case of REWRITERULE directives, in .htaccess context these regular expressions must be re-compiled
with every request to the directory, whereas in main server configuration context they are compiled once and cached.
Additionally, the rules themselves are more complicated, as one must work around the restrictions that come with
per-directory context and mod_rewrite. Consult the Rewrite Guide (p. 147) for more detail on this subject.

The second consideration is one of security. You are permitting users to modify server configuration, which may result
in changes over which you have no control. Carefully consider whether you want to give your users this privilege.
Note also that giving users less privileges than they need will lead to additional technical support requests. Make
sure you clearly tell your users what level of privileges you have given them. Specifying exactly what you have set
ALLOWOVERRIDE to, and pointing them to the relevant documentation, will save yourself a lot of confusion later.

Note that it is completely equivalent to put a . htaccess file in a directory /www/htdocs/example containing
a directive, and to put that same directive in a Directory section <Directory "/www/htdocs/example"> in
your main server configuration:

.htaccessfilein /www/htdocs/example:

6.6. APACHE HTTP SERVER TUTORIAL: .HTACCESS FILES 251

Contents of .htaccess file in /www/htdocs/example

AddType text/example ".exm"

Section from your httpd. conf file

<Directory "/www/htdocs/example">
AddType text/example ".exm"
</Directory>

However, putting this configuration in your server configuration file will result in less of a performance hit, as the
configuration is loaded once when httpd starts, rather than every time a file is requested.

The use of . htaccess files can be disabled completely by setting the ALLOWOVERRIDE directive to none:

AllowOverride None

How directives are applied

The configuration directives found in a . htaccess file are applied to the directory in which the . htaccess file
is found, and to all subdirectories thereof. However, it is important to also remember that there may have been
.htaccess files in directories higher up. Directives are applied in the order that they are found. Therefore, a
.htaccess file in a particular directory may override directives found in .htaccess files found higher up in
the directory tree. And those, in turn, may have overridden directives found yet higher up, or in the main server
configuration file itself.

Example:

In the directory /www/htdocs/examplel we have a . htaccess file containing the following:
Options +ExecCGI

(Note: you must have "AllowOverride Options" in effect to permit the use of the "OPTIONS" directive in
.htaccess files.)

In the directory /www/htdocs/examplel/example2 we have a . htaccess file containing:
Options Includes

Because of this second . htaccess file, in the directory /www/htdocs/examplel/example?2, CGI execution
is not permitted, as only Options Includes is in effect, which completely overrides any earlier setting that may
have been in place.

Merging of .htaccess with the main configuration files

As discussed in the documentation on Configuration Sections (p. 35) , . htaccess files can override the <DIREC-
TORY > sections for the corresponding directory, but will be overridden by other types of configuration sections from
the main configuration files. This fact can be used to enforce certain configurations, even in the presence of a lib-
eral ALLOWOVERRIDE setting. For example, to prevent script execution while allowing anything else to be set in
.htaccess you can use:

252 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

<Directory "/www/htdocs">
AllowOverride All
</Directory>

<Location "/">
Options +IncludesNoExec -ExecCGI
</Location>

iThis example assumes that your DOCUMENTROOT is /www/htdocs.

Authentication example

If you jumped directly to this part of the document to find out how to do authentication, it is important to note
one thing. There is a common misconception that you are required to use . htaccess files in order to implement
password authentication. This is not the case. Putting authentication directives in a <DIRECTORY> section, in your
main server configuration file, is the preferred way to implement this, and . htaccess files should be used only if
you don’t have access to the main server configuration file. See above for a discussion of when you should and should
notuse .htaccess files.

Having said that, if you still think you need to use a . htaccess file, you may find that a configuration such as what
follows may work for you.

.htaccess file contents:

AuthType Basic

AuthName "Password Required"

AuthUserFile "/www/passwords/password.file"
AuthGroupFile "/www/passwords/group.file"
Require group admins

Note that AllowOverride AuthConfig must be in effect for these directives to have any effect.

Please see the authentication tutorial (p. 227) for a more complete discussion of authentication and authorization.

Server Side Includes example

Another common use of .htaccess files is to enable Server Side Includes for a particular directory. This may be
done with the following configuration directives, placed in a . htaccess file in the desired directory:

Options +Includes
AddType text/html "shtml"
AddHandler server-parsed shtml

Note that A11lowOverride Options and AllowOverride FileInfo mustboth be in effect for these direc-
tives to have any effect.

Please see the SSI tutorial (p. 243) for a more complete discussion of server-side includes.

Rewrite Rules in .htaccess files

When using REWRITERULE in .htaccess files, be aware that the per-directory context changes things a bit. In
particular, rules are taken to be relative to the current directory, rather than being the original requested URI. Consider
the following examples:

6.6. APACHE HTTP SERVER TUTORIAL: .HTACCESS FILES 253

In httpd.conf
RewriteRule ""/images/ (.+)\.jpg" "/images/$1l.png"

In .htaccess in root dir
RewriteRule "“images/ (.+)\.Jjpg" "images/S$1l.png"

In .htaccess in images/
RewriteRule "~ (.+)\.Jpg" "S$1.png"

Ina .htaccess in your document directory, the leading slash is removed from the value supplied to REWRITERULE,
and in the images subdirectory, /images/ is removed from it. Thus, your regular expression needs to omit that
portion as well.

Consult the mod_rewrite documentation (p. 146) for further details on using mod_rewrite.

CGI example

Finally, you may wish to use a .htaccess file to permit the execution of CGI programs in a particular directory.
This may be implemented with the following configuration:

Options +ExecCGI
AddHandler cgi-script "cgi" "pl"

Alternately, if you wish to have all files in the given directory be considered to be CGI programs, this may be done
with the following configuration:

Options +ExecCGI
SetHandler cgi-script

Note that AllowOverride Options and AllowOverride FileInfo mustboth be in effect for these direc-
tives to have any effect.

Please see the CGI tutorial (p. 236) for a more complete discussion of CGI programming and configuration.

Troubleshooting

When you put configuration directives in a . htaccess file, and you don’t get the desired effect, there are a number
of things that may be going wrong.

Most commonly, the problem is that ALLOWOVERRIDE is not set such that your configuration directives are being
honored. Make sure that you don’t have a Al1lowOverride None in effect for the file scope in question. A good
test for this is to put garbage in your . htaccess file and reload the page. If a server error is not generated, then you
almost certainly have AllowOverride None in effect.

If, on the other hand, you are getting server errors when trying to access documents, check your httpd error log. It will
likely tell you that the directive used in your . ht access file is not permitted.

[Fri Sep 17 18:43:16 2010] [alert] [client 192.168.200.51]
/var/www/html/.htaccess: DirectoryIndex not allowed here

This will indicate either that you’ve used a directive that is never permitted in .htaccess files, or that you simply
don’t have ALLOWOVERRIDE set to a level sufficient for the directive you’ve used. Consult the documentation for
that particular directive to determine which is the case.

254 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Alternately, it may tell you that you had a syntax error in your usage of the directive itself.

[Sat Aug 09 16:22:34 2008] [alert] [client 192.168.200.51]
/var/www/html/.htaccess: RewriteCond: bad flag delimiters

In this case, the error message should be specific to the particular syntax error that you have committed.

6.7. PER-USER WEB DIRECTORIES 255
6.7 Per-user web directories

On systems with multiple users, each user can be permitted to have a web site in their home directory using the
USERDIR directive. Visitors to a URL http://example.com/ username/ will get content out of the home
directory of the user "username™, out of the subdirectory specified by the USERDIR directive.

Note that, by default, access to these directories is not enabled. You can enable access when using USERDIR by
uncommenting the line:

#Include conf/extra/httpd-userdir.conf
in the default config file conf/httpd.conf, and adapting the ht tpd-userdir. conf file as necessary, or by

including the appropriate directives in a <DIRECTORY > block within the main config file.

See also

e Mapping URLs to the Filesystem (p. 64)

Per-user web directories

Related Modules Related Directives

MOD_USERDIR USERDIR
DIRECTORYMATCH
ALLOWOVERRIDE

Setting the file path with UserDir

The USERDIR directive specifies a directory out of which per-user content is loaded. This directive may take several
different forms.

If a path is given which does not start with a leading slash, it is assumed to be a directory path relative to the home
directory of the specified user. Given this configuration:

UserDir public_html

the URL http://example.com/ rbowen/file.html will be translated to the file path
/home/rbowen/public_html/file.html

If a path is given starting with a slash, a directory path will be constructed using that path, plus the username specified.
Given this configuration:

UserDir /var/html
the URL http://example.com/ rbowen/file.html will be translated to the file path

/var/html/rbowen/file.html

If a path is provided which contains an asterisk (*), a path is used in which the asterisk is replaced with the username.
Given this configuration:

UserDir /var/www/x/docs

256 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

the URL http://example.com/ rbowen/file.html will be translated to the file path
/var/www/rbowen/docs/file.html

Multiple directories or directory paths can also be set.
UserDir public_html /var/html
For the URL http://example.com/ rbowen/file.html, Apache will search for “rbowen. If it isn’t

found, Apache will search for rbowen in /var/html. If found, the above URL will then be translated to the file
path /var/html/rbowen/file.html

Redirecting to external URLs
The USERDIR directive can be used to redirect user directory requests to external URLs.
UserDir http://example.org/users/x*/

The above example will redirect a request for http://example.com/ bob/abc.html to
http://example.org/users/bob/abc.html.

Restricting what users are permitted to use this feature

Using the syntax shown in the UserDir documentation, you can restrict what users are permitted to use this function-
ality:

UserDir disabled root jro fish

The configuration above will enable the feature for all users except for those listed in the disabled statement. You
can, likewise, disable the feature for all but a few users by using a configuration like the following:

UserDir disabled
UserDir enabled rbowen krietz

See USERDIR documentation for additional examples.

Enabling a cgi directory for each user

In order to give each user their own cgi-bin directory, you can use a <DIRECTORY> directive to make a particular
subdirectory of a user’s home directory cgi-enabled.

<Directory "/home/x/public_html/cgi-bin/">
Options ExecCGI
SetHandler cgi-script

</Directory>

Then, presuming that UserDir is set to public_html, a cgi program example.cgi could be loaded from that
directory as:

http://example.com/ rbowen/cgi-bin/example.cgi

6.7. PER-USER WEB DIRECTORIES 257

Allowing users to alter configuration

If you want to allows users to modify the server configuration in their web space, they will need to use . htaccess
files to make these changes. Ensure that you have set ALLOWOVERRIDE to a value sufficient for the directives that
you want to permit the users to modify. See the .htaccess tutorial (p. 249) for additional details on how this works.

258 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS
6.8 Reverse Proxy Guide

In addition to being a "basic" web server, and providing static and dynamic content to end-users, Apache httpd (as
well as most other web servers) can also act as a reverse proxy server, also-known-as a "gateway" server.

In such scenarios, httpd itself does not generate or host the data, but rather the content is obtained by one or several
backend servers, which normally have no direct connection to the external network. As httpd receives a request from
a client, the request itself is proxied to one of these backend servers, which then handles the request, generates the
content and then sends this content back to httpd, which then generates the actual HTTP response back to the client.

There are numerous reasons for such an implementation, but generally the typical rationales are due to security, high-
availability, load-balancing and centralized authentication/authorization. It is critical in these implementations that the
layout, design and architecture of the backend infrastructure (those servers which actually handle the requests) are
insulated and protected from the outside; as far as the client is concerned, the reverse proxy server is the sole source
of all content.

A typical implementation is below:

The 'Net/Cloud

o Firewallirouter

— Apache hitpd
J C | reverse-proxy server
! -

. Firewallrouter
i

1 []

Backend servers

Reverse Proxy

Related Modules Related Directives
MOD_PROXY PROXYPASS
MOD_PROXY_BALANCER BALANCERMEMBER

MOD_PROXY_HCHECK

6.8. REVERSE PROXY GUIDE 259
Simple reverse proxying

The PROXYPASS directive specifies the mapping of incoming requests to the backend server (or a cluster of servers
known as a Balancer group). The simpliest example proxies all requests (" /") to a single backend:

ProxyPass "/" "http://www.example.com/"

To ensure that and Location: headers generated from the backend are modified to point to the reverse proxy, instead
of back to itself, the PROXYPASSREVERSE directive is most often required:

ProxyPass "/" "http://www.example.com/"
ProxyPassReverse "/" "http://www.example.com/"

Only specific URIs can be proxied, as shown in this example:

ProxyPass "/images" "http://www.example.com/"
ProxyPassReverse "/images" "http://www.example.com/"

In the above, any requests which start with the /images path with be proxied to the specified backend, otherwise it
will be handled locally.

Clusters and Balancers

As useful as the above is, it still has the deficiencies that should the (single) backend node go down, or become heavily
loaded, that proxying those requests provides no real advantage. What is needed is the ability to define a set or group
of backend servers which can handle such requests and for the reverse proxy to load balance and failover among them.
This group is sometimes called a cluster but Apache httpd’s term is a balancer. One defines a balancer by leveraging
the <PROXY> and BALANCERMEMBER directives as shown:

<Proxy balancer://myset>
BalancerMember http://www2.example.com:8080
BalancerMember http://www3.example.com:8080
ProxySet lbmethod=bytraffic

</Proxy>
ProxyPass "/images/" ‘"balancer://myset/"
ProxyPassReverse "/images/" "balancer://myset/"

The balancer:// scheme is what tells httpd that we are creating a balancer set, with the name mysez. It includes
2 backend servers, which httpd calls BalancerMembers. In this case, any requests for /images will be proxied to
one of the 2 backends. The PROXYSET directive specifies that the myset Balancer use a load balancing algorithm that
balances based on I/O bytes.

:> Hint

BalancerMembers are also sometimes referred to as workers.

260 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Balancer and BalancerMember configuration

You can adjust numerous configuration details of the balancers and the workers via the various parameters defined
in PROXYPASS. For example, assuming we would want http://www3.example.com: 8080 to handle 3x the
traffic with a timeout of 1 second, we would adjust the configuration as follows:

<Proxy balancer://myset>
BalancerMember http://www2.example.com:8080
BalancerMember http://www3.example.com:8080 loadfactor=3 timeout=1
ProxySet lbmethod=bytraffic

</Proxy>

ProxyPass "/images" "balancer://myset/"
ProxyPassReverse "/images" "balancer://myset/"
Failover

You can also fine-tune various failover scenarios, detailing which workers and even which balancers should
accessed in such cases. For example, the below setup implements 2 failover cases: In the first,
http://hstandby.example.com: 8080 is only sent traffic if all other workers in the myset balancer are not
available. If that worker itself is not available, only then will the http://bkupl.example.com:8080 and
http://bkup2.example.com: 8080 workers be brought into rotation:

<Proxy balancer://myset>
BalancerMember http://www2.example.com:8080
BalancerMember http://www3.example.com:8080 loadfactor=3 timeout=1
BalancerMember http://hstandby.example.com:8080 status=+H
BalancerMember http://bkupl.example.com:8080 lbset=1
BalancerMember http://bkup2.example.com:8080 lbset=1
ProxySet lbmethod=byrequests

</Proxy>
ProxyPass "/images/" "balancer://myset/"
ProxyPassReverse "/images/" "balancer://myset/"

The magic of this failover setup is setting http://hstandby.example.com: 8080 with the +H status flag,
which puts it in hot standby mode, and making the 2 bkup# servers part of the #1 load balancer set (the default set is
0); for failover, hot standbys (if they exist) are used 1st, when all regular workers are unavailable; load balancer sets
are always tried lowest number first.

Balancer Manager

One of the most unique and useful features of Apache httpd’s reverse proxy is the embedded balancer-manager
application. Similar to MOD_STATUS, balancer-manager displays the current working configuration and status of the
enabled balancers and workers currently in use. However, not only does it display these parameters, it also allows for
dynamic, runtime, on-the-fly reconfiguration of almost all of them, including adding new BalancerMembers (workers)
to an existing balancer. To enable these capability, the following needs to be added to your configuration:

<Location "/balancer-manager">
SetHandler balancer-manager
Require host localhost
</Location>

6.8. REVERSE PROXY GUIDE 261

m Warning

Do not enable the balancer-manager until you have secured your server (p. 787) . In particular,
ensure that access to the URL is tightly restricted.

When the reverse proxy server is accessed at that url (eg:
http://rproxy.example.com/balancer-manager/, you will see a page similar to the below:

¢

Balancer Manager %\ +

wE O3 A AdDO0S e §- = &

Load Balancer Manager for localhost

Server Version: Apache/2.5.0-dev (Unix) OpenSSL/1.0.2f
Server Built: Feb 9 2016 07:00:20

Balancer changes will NOT be persisted on restart.
Balancers are NOT inherited from main server.

ProxyPass settings are NOT inherited from main server.

LoadBalancer Status for balancer://demo [p4420eeae_demo]

'MaxMembers StickySession DisableFailover Timeout FailoverAttempts Method Path Active|

6 [1Used] (Mone) | Off | 0 |] bytraffic /e/ Yes
[Worker URL 'Route RouteRedir Factor Set Status Elected Busy Load To From HC Method HC Interval Passes Fails HC uri HC Expr|
http://www.example.com/ : 1 0 IntOk 7 0 0 31K 25K GET 10 1(0) 2(0) foof2

Health check cond. expressions:
.Expr name Expression |
. foof % {REQUEST_STATUS} =~ [~[234])/
foof2 _hc{'body') =~ fdomain is established!:

This form allows the devops admin to adjust various parameters, take workers offline, change load balancing methods
and add new works. For example, clicking on the balancer itself, you will get the following page:

262 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Balancer Manager ® +
& @ localhost:B880/balancer-manager?b=demo&nonce=decc3Tbe-9€ ¢ @ |Q search B O 4+ # 4d 0 @ ¢ [§ = B
Load Balancer Manager for localhost
Server Version: Apache/2.5.0-dev (Unix) OpenSSL/1.0.2f
Server Built: Feb 9 2016 07:00:20
Balancer changes will NOT be persisted on restart.
Balancers are NOT inherited from main server.
ProxyPass settings are NOT inherited from main server.
LoadBalancer Status for balancer://demo [p4420eeae_demo]
'MaxMembers StickySession DisableFailover Timeout FailoverAttempts Method Path Active
6 [1 Used] (None) Off 0 0 bytraffic fc/ Yes
| Worker URL Route RouteRedir Factor Set Status Elected Busy Load To From HC Method HC Interval Passes Fails HC uri HC Expr
http://www.example.com/ | | 1 | 0 Init Ok 7 0 | 0 _3.1K 2.5K | GET | 10 1(0) .2 (0} foof2

| Heal:l:ll check cond. expressions:

[Expr name Expression
foof %{REQUEST_STATUS} =~ /A[234])/
foof2 he('body’) =~ /domain is established/|

Edit balancer settings for balancer://demo

LBmethod: . bytratfic H
Timeout: Iﬁ
Failover Attempts: 0
Disable Failover: g:r o
. Sticky Session: (Use '-' to delete).
.Rdd New Worker: Are you sure? .

Submit

Whereas clicking on a worker, displays this page:

6.8. REVERSE PROXY GUIDE 263

Balancer Manager

c | o Q, Search wB O % & 4d 0@ ¢

& @ localhost:BBEO/L

Load Balancer Manager for localhost

Server Version: Apache/2.5.0-dev (Unix) OpenSSL/1.0.2f
Server Built: Feb 9 2016 07:00:20

Balancer changes will NOT be persisted on restart.
Balancers are NOT inherited from main server.

ProxyPass settings are NOT inherited from main server.

LoadBalancer Status for balancer://demo [p4420eeae_demo]

MaxMe mbers Stic kySession ‘DisableFailover Timeout FailoverAtte mpts ‘Method Path 'nctlua_

6 [1 Used] (None) Off 0 0 bytraffic /c/ Yes
Worker URL 'Route RouteRedir Factor Set Status Elected Busy Load To From HC Method HC Interval Passes Fails HC uri HC Expr|
http://www.example.com/ | 1 | 0 Init Ok 7 0 | 0 _3.1K 2.5!(_ GET 10 1(0) 2(0) foof2

| Hea[th check cond. expressions:

Expr name Expression

. foof %{REQUEST_STATUS} =~ ,.-"\[234],-’.
foof2 _hc{'body') =~ fdomain is eszablishedf:

Edit worker settings for http:/ /www.example.com/

Load factor: 1 8]

LB Set: 0
Route:
Route Redirect:

:Igﬂore Ermrs-Drainlng Hode-Disabler.l-Hot Standby-l-lc Fail-stopped:

Status: Oon On On Oon On On
off © | off © of @ of @ Off @ Off @
.Hean:h Check param- Value .
Method GET =)
Expr fool2 E
Interval (secs) 10

Passes trigger 1
Fails trigger) 2
HC uri

To have these changes persist restarts of the reverse proxy, ensure that BALANCERPERSIST is enabled.

Dynamic Health Checks

Before httpd proxies a request to a worker, it can "fest" if that worker is available via setting the ping parameter
for that worker using PROXYPASS. Oftentimes it is more useful to check the health of the workers out of band, in a
dynamic fashion. This is achieved in Apache httpd by the MOD_PROXY_HCHECK module.

BalancerMember status flags

In the balancer-manager the current state, or status, of a worker is displayed and can be set/reset. The meanings of
these statuses are as follows:

264

CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Flag

String

Description

Ok

Worker is available

Init

Worker has been initialized

Dis

Worker is disabled and will not accept
any requests; will be automatically re-
tried

Stop

Worker is administratively stopped; will
not accept requests and will not be auto-
matically retried

Ign

Worker is in ignore-errors mode and will
always be considered available.

Stby

Worker is in hot-standby mode and will
only be used if no other viable workers
are available

Err

Worker is in an error state, usually due
to failing pre-request check; requests will
not be proxied to this worker, but it will
be retried depending on the retry set-
ting of the worker.

Drn

Worker is in drain mode and will only ac-
cept existing sticky sessions destined for
itself and ignore all other requests.

HcFlI

Worker has failed dynamic health check
and will not be used until it passes subse-
quent health checks.

Chapter 7

Platform-specific Notes

265

266 CHAPTER 7. PLATFORM-SPECIFIC NOTES

7.1 Platform Specific Notes

Microsoft Windows

Using Apache This document explains how to install, configure and run Apache 2.4 under Microsoft Windows.
See: Using Apache with Microsoft Windows (p. 267)

Compiling Apache There are many important points before you begin compiling Apache. This document explain
them.

See: Compiling Apache for Microsoft Windows (p. 275)

Unix Systems

RPM Based Systems (Redhat / CentOS / Fedora) This document explains how to build, install, and run Apache 2.4
on systems supporting the RPM packaging format.

See: Using Apache With RPM Based Systems (p. 281)

Other Platforms

Novell NetWare This document explains how to install, configure and run Apache 2.4 under Novell NetWare 5.1 and
above.

See: Using Apache With Novell NetWare (p. 284)

7.2. USING APACHE HTTP SERVER ON MICROSOFT WINDOWS 267

7.2 Using Apache HTTP Server on Microsoft Windows

This document explains how to install, configure and run Apache 2.5 under Microsoft Windows. If you have questions
after reviewing the documentation (and any event and error logs), you should consult the peer-supported users’ mailing
list!.

This document assumes that you are installing a binary distribution of Apache. If you want to compile Apache yourself
(possibly to help with development or tracking down bugs), see Compiling Apache for Microsoft Windows (p. 275) .

Operating System Requirements

The primary Windows platform for running Apache 2.5 is Windows 2000 or later. Always obtain and install the current
service pack to avoid operating system bugs.

:Apache HTTP Server versions later than 2.2 will not run on any operating system earlier than
Windows 2000.

Downloading Apache for Windows

The Apache HTTP Server Project itself does not provide binary releases of software, only source code. Individual
committers may provide binary packages as a convenience, but it is not a release deliverable.

If you cannot compile the Apache HTTP Server yourself, you can obtain a binary package from numerous binary
distributions available on the Internet.

Popular options for deploying Apache httpd, and, optionally, PHP and MySQL, on Microsoft Windows, include:

e ApacheHaus?

Apache Lounge®
Bitnami WAMP Stack*
WampServer’
XAMPP®

Customizing Apache for Windows

Apache is configured by the files in the conf subdirectory. These are the same files used to configure the Unix version,
but there are a few different directives for Apache on Windows. See the directive index (p. 1106) for all the available
directives.

The main differences in Apache for Windows are:

e Because Apache for Windows is multithreaded, it does not use a separate process for each request, as Apache
can on Unix. Instead there are usually only two Apache processes running: a parent process, and a child which
handles the requests. Within the child process each request is handled by a separate thread.

The process management directives are also different:

Uhttp://httpd.apache.org/userslist.html
Zhttp://www.apachehaus.com/cgi-bin/download.plx
3http://www.apachelounge.com/download/
“http://bitnami.com/stack/wamp
Shttp://www.wampserver.com/
Ohttp://www.apachefriends.org/en/xampp.html

http://httpd.apache.org/userslist.html
http://www.apachehaus.com/cgi-bin/download.plx
http://www.apachelounge.com/download/
http://bitnami.com/stack/wamp
http://www.wampserver.com/
http://www.apachefriends.org/en/xampp.html

268

CHAPTER 7. PLATFORM-SPECIFIC NOTES

MAXCONNECTIONSPERCHILD: Like the Unix directive, this controls how many connections a single child
process will serve before exiting. However, unlike on Unix, a replacement process is not instantly available.
Use the default MaxConnectionsPerChild O, unless instructed to change the behavior to overcome a
memory leak in third party modules or in-process applications.

m Warning: The server configuration file is reread when a new child process is started. If
you have modified httpd. conf, the new child may not start or you may receive unex-
pected results.

THREADSPERCHILD: This directive is new. It tells the server how many threads it should use. This is the
maximum number of connections the server can handle at once, so be sure to set this number high enough for
your site if you get a lot of hits. The recommended default is ThreadsPerChild 150, but this must be
adjusted to reflect the greatest anticipated number of simultaneous connections to accept.

The directives that accept filenames as arguments must use Windows filenames instead of Unix ones. However,
because Apache may interpret backslashes as an "escape character" sequence, you should consistently use
forward slashes in path names, not backslashes.

While filenames are generally case-insensitive on Windows, URLSs are still treated internally as case-sensitive
before they are mapped to the filesystem. For example, the <LOCATION>, ALIAS, and PROXYPASS directives
all use case-sensitive arguments. For this reason, it is particularly important to use the <DIRECTORY > directive
when attempting to limit access to content in the filesystem, since this directive applies to any content in a
directory, regardless of how it is accessed. If you wish to assure that only lowercase is used in URLs, you can
use something like:

RewriteEngine On

RewriteMap lowercase "int:tolower"

RewriteCond "$%${REQUEST_URI}" "[A-Z]"

RewriteRule " (.*)" "S{lowercase:$1}" [R,L]

When running, Apache needs write access only to the logs directory and any configured cache directory tree.
Due to the issue of case insensitive and short 8.3 format names, Apache must validate all path names given. This
means that each directory which Apache evaluates, from the drive root up to the directory leaf, must have read,
list and traverse directory permissions. If Apache2.5 is installed at C:\Program Files, then the root directory,
Program Files and Apache2.5 must all be visible to Apache.

Apache for Windows contains the ability to load modules at runtime, without recompiling the server. If Apache
is compiled normally, it will install a number of optional modules in the \Apache2.5\modules directory.
To activate these or other modules, the new LOADMODULE directive must be used. For example, to activate the
status module, use the following (in addition to the status-activating directives in access.conf):

LoadModule status_module "modules/mod_status.so"

Information on creating loadable modules (p. 908) is also available.

Apache can also load ISAPI (Internet Server Application Programming Interface) extensions such as those used
by Microsoft IIS and other Windows servers. More information is available (p. 683) . Note that Apache cannot
load ISAPI Filters, and ISAPI Handlers with some Microsoft feature extensions will not work.

When running CGI scripts, the method Apache uses to find the interpreter for the script is configurable using
the SCRIPTINTERPRETERSOURCE directive.

Since it is often difficult to manage files with names like . htaccess in Windows, you may find it useful to
change the name of this per-directory configuration file using the ACCESSFILENAME directive.

Any errors during Apache startup are logged into the Windows event log when running on Windows NT. This
mechanism acts as a backup for those situations where Apache is not yet prepared to use the error. log file.
You can review the Windows Application Event Log by using the Event Viewer, e.g. Start - Settings - Control
Panel - Administrative Tools - Event Viewer.

7.2. USING APACHE HTTP SERVER ON MICROSOFT WINDOWS 269

Running Apache as a Service

Apache comes with a utility called the Apache Service Monitor. With it you can see and manage the state of all
installed Apache services on any machine on your network. To be able to manage an Apache service with the monitor,
you have to first install the service (either automatically via the installation or manually).

You can install Apache as a Windows NT service as follows from the command prompt at the Apache bin subdirec-
tory:

httpd.exe -k install

If you need to specify the name of the service you want to install, use the following command. You have to do this if
you have several different service installations of Apache on your computer. If you specify a name during the install,
you have to also specify it during any other -k operation.

httpd.exe -k install -n "MyServiceName"

If you need to have specifically named configuration files for different services, you must use this:

httpd.exe -k install -n "MyServiceName" -f "c:\files\my.conf"

If you use the first command without any special parameters except —k install, the service will be called
Apache?. 5 and the configuration will be assumed to be conf\httpd.conf.

Removing an Apache service is easy. Just use:

httpd.exe -k uninstall

The specific Apache service to be uninstalled can be specified by using:

httpd.exe -k uninstall -n "MyServiceName"

Normal starting, restarting and shutting down of an Apache service is usually done via the Apache Service Monitor,
by using commands like NET START Apache2.5and NET STOP Apache2.5 or via normal Windows service
management. Before starting Apache as a service by any means, you should test the service’s configuration file by
using:

httpd.exe -n "MyServiceName" -t

You can control an Apache service by its command line switches, too. To start an installed Apache service you’ll use
this:

httpd.exe -k start -n "MyServiceName"

To stop an Apache service via the command line switches, use this:

httpd.exe -k stop —-n "MyServiceName"

270 CHAPTER 7. PLATFORM-SPECIFIC NOTES

or

httpd.exe -k shutdown -n "MyServiceName"

You can also restart a running service and force it to reread its configuration file by using:

httpd.exe -k restart -n "MyServiceName" ‘

By default, all Apache services are registered to run as the system user (the LocalSystem account). The
LocalSystem account has no privileges to your network via any Windows-secured mechanism, including the file
system, named pipes, DCOM, or secure RPC. It has, however, wide privileges locally.

m Never grant any network privileges to the LocalSystem account! If you need Apache
to be able to access network resources, create a separate account for Apache as noted
below.

It is recommended that users create a separate account for running Apache service(s). If you have to access network
resources via Apache, this is required.

1. Create a normal domain user account, and be sure to memorize its password.

2. Grant the newly-created user a privilege of Log on as a service and Act as part of the
operating system. On Windows NT 4.0 these privileges are granted via User Manager for Domains,
but on Windows 2000 and XP you probably want to use Group Policy for propagating these settings. You can
also manually set these via the Local Security Policy MMC snap-in.

3. Confirm that the created account is a member of the Users group.

4. Grant the account read and execute (RX) rights to all document and script folders (htdocs and cgi-bin for
example).

5. Grant the account change (RWXD) rights to the Apache 1ogs directory.

6. Grant the account read and execute (RX) rights to the httpd . exe binary executable.

:ilt is usually a good practice to grant the user the Apache service runs as read and execute (RX)
access to the whole Apache2.5 directory, except the 1ogs subdirectory, where the user has to
have at least change (RWXD) rights.

If you allow the account to log in as a user and as a service, then you can log on with that account and test that
the account has the privileges to execute the scripts, read the web pages, and that you can start Apache in a console
window. If this works, and you have followed the steps above, Apache should execute as a service with no problems.

iError code 2186 is a good indication that you need to review the "Log On As" configuration
for the service, since Apache cannot access a required network resource. Also, pay close
attention to the privileges of the user Apache is configured to run as.

When starting Apache as a service you may encounter an error message from the Windows Service Control Manager.
For example, if you try to start Apache by using the Services applet in the Windows Control Panel, you may get the
following message:

Could not start the Apache2.5 service on \\COMPUTER
Error 1067; The process terminated unexpectedly.

7.2. USING APACHE HTTP SERVER ON MICROSOFT WINDOWS 271

You will get this generic error if there is any problem with starting the Apache service. In order to see what is really
causing the problem you should follow the instructions for Running Apache for Windows from the Command Prompt.

If you are having problems with the service, it is suggested you follow the instructions below to try starting httpd.exe
from a console window, and work out the errors before struggling to start it as a service again.

Running Apache as a Console Application

Running Apache as a service is usually the recommended way to use it, but it is sometimes easier to work from the
command line, especially during initial configuration and testing.

To run Apache from the command line as a console application, use the following command:

httpd.exe

Apache will execute, and will remain running until it is stopped by pressing Control-C.

You can also run Apache via the shortcut Start Apache in Console placed to Start Menu —--> Programs —->
Apache HTTP Server 2.5.xx —--> Control Apache Server during the installation. This will open a
console window and start Apache inside it. If you don’t have Apache installed as a service, the window will remain
visible until you stop Apache by pressing Control-C in the console window where Apache is running in. The server
will exit in a few seconds. However, if you do have Apache installed as a service, the shortcut starts the service. If the
Apache service is running already, the shortcut doesn’t do anything.

If Apache is running as a service, you can tell it to stop by opening another console window and entering:

httpd.exe -k shutdown

Running as a service should be preferred over running in a console window because this lets Apache end any current
operations and clean up gracefully.

But if the server is running in a console window, you can only stop it by pressing Control-C in the same window.

You can also tell Apache to restart. This forces it to reread the configuration file. Any operations in progress are
allowed to complete without interruption. To restart Apache, either press Control-Break in the console window you
used for starting Apache, or enter

’httpd.exe -k restart

if the server is running as a service.

iNote for people familiar with the Unix version of Apache: these commands provide a Windows
equivalentto kill -TERM pidand kill -USR1 pid. The command line option used,
—k, was chosen as a reminder of the k111 command used on Unix.

If the Apache console window closes immediately or unexpectedly after startup, open the Command Prompt from the
Start Menu —> Programs. Change to the folder to which you installed Apache, type the command httpd.exe, and
read the error message. Then change to the logs folder, and review the error. log file for configuration mistakes.
Assuming httpd was installed into C:\Program Files\Apache Software Foundation\Apache2.5)\,
you can do the following:

c:
cd "\Program Files\Apache Software Foundation\Apache2.5\bin"
httpd.exe

272 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Then wait for Apache to stop, or press Control-C. Then enter the following:

cd ..\logs
more < error.log

When working with Apache it is important to know how it will find the configuration file. You can specify a configu-
ration file on the command line in two ways:

e —f specifies an absolute or relative path to a particular configuration file:

’httpd.exe -f "c:\my server files\anotherconfig.conf" ‘

or

‘httpd.exe -f files\anotherconfig.conf

e —n specifies the installed Apache service whose configuration file is to be used:

httpd.exe -n "MyServiceName"

In both of these cases, the proper SERVERROOT should be set in the configuration file.

If you don’t specify a configuration file with —f or —n, Apache will use the file name compiled into the server, such
as conf\httpd.conf. This built-in path is relative to the installation directory. You can verify the compiled file
name from a value labelled as SERVER_CONF IG_FILE when invoking Apache with the —V switch, like this:

’httpd.exe -V

Apache will then try to determine its SERVERROOT by trying the following, in this order:

1. A SERVERROOT directive via the —C command line switch.

2. The —-d switch on the command line.

3. Current working directory.

4. A registry entry which was created if you did a binary installation.

5. The server root compiled into the server. This is /apache by default, you can verify it by using
httpd.exe -V and looking for a value labelled as HTTPD_ROOT.

If you did not do a binary install, Apache will in some scenarios complain about the missing registry key. This warning
can be ignored if the server was otherwise able to find its configuration file.

The value of this key is the SERVERROOT directory which contains the conf subdirectory. When Apache starts
it reads the httpd. conf file from that directory. If this file contains a SERVERROOT directive which contains a
different directory from the one obtained from the registry key above, Apache will forget the registry key and use the
directory from the configuration file. If you copy the Apache directory or configuration files to a new location it is
vital that you update the SERVERROOT directive in the ht tpd. conf file to reflect the new location.

7.2. USING APACHE HTTP SERVER ON MICROSOFT WINDOWS 273

Testing the Installation

After starting Apache (either in a console window or as a service) it will be listening on port 80 (unless you changed
the LISTEN directive in the configuration files or installed Apache only for the current user). To connect to the server
and access the default page, launch a browser and enter this URL:

http://localhost/

Apache should respond with a welcome page and you should see "It Works!". If nothing happens or you get an error,
look in the error. log file in the 1ogs subdirectory. If your host is not connected to the net, or if you have serious
problems with your DNS (Domain Name Service) configuration, you may have to use this URL:

http://127.0.0.1/

If you happen to be running Apache on an alternate port, you need to explicitly put that in the URL:

http://127.0.0.1:8080/

Once your basic installation is working, you should configure it properly by editing the files in the conf subdirectory.
Again, if you change the configuration of the Windows NT service for Apache, first attempt to start it from the
command line to make sure that the service starts with no errors.

Because Apache cannot share the same port with another TCP/IP application, you may need to stop, uninstall or
reconfigure certain other services before running Apache. These conflicting services include other WWW servers,
some firewall implementations, and even some client applications (such as Skype) which will use port 80 to attempt
to bypass firewall issues.

Configuring Access to Network Resources

Access to files over the network can be specified using two mechanisms provided by Windows:

Mapped drive letters e.g., Alias /images/ Z:/

UNC paths e.g.,Alias /images/ //imagehost/www/images/

Mapped drive letters allow the administrator to maintain the mapping to a specific machine and path outside of the
Apache httpd configuration. However, these mappings are associated only with interactive sessions and are not directly
available to Apache httpd when it is started as a service. Use only UNC paths for network resources in httpd.conf

so that the resources can be accessed consistently regardless of how Apache httpd is started. (Arcane and error prone
procedures may work around the restriction on mapped drive letters, but this is not recommended.)

Example DocumentRoot with UNC path

DocumentRoot "//dochost/www/html/"

Example DocumentRoot with IP address in UNC path

DocumentRoot "//192.168.1.50/docs/"

274 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Example Alias and corresponding Directory with UNC path

Alias "/images/" "//imagehost/www/images/"
<Directory "//imagehost/www/images/">

...

<Directory>

When running Apache httpd as a service, you must create a separate account in order to access network resources, as
described above.

Windows Tuning

e If more than a few dozen piped loggers are used on an operating system instance, scaling up the "desktop heap"
is often necessary. For more detailed information, refer to the piped logging (p. 56) documentation.

7.3. COMPILING APACHE FOR MICROSOFT WINDOWS 275
7.3 Compiling Apache for Microsoft Windows

There are many important points to consider before you begin compiling Apache HTTP Server (httpd). See Using
Apache HTTP Server on Microsoft Windows (p. 267) before you begin.

httpd can be built on Windows using a cmake-based build system or with Visual Studio project files maintained by
httpd developers. The cmake-based build system directly supports more versions of Visual Studio but currently has
considerable functional limitations.

Building httpd with the included Visual Studio project files
Requirements

Compiling Apache requires the following environment to be properly installed:

e Disk Space

Make sure you have at least 200 MB of free disk space available. After installation Apache requires approx-
imately 80 MB of disk space, plus space for log and cache files, which can grow rapidly. The actual disk
space requirements will vary considerably based on your chosen configuration and any third-party modules or
libraries, especially when OpenSSL is also built. Because many files are text and very easily compressed, NTFS
filesystem compression cuts these requirements in half.

e Appropriate Patches

The httpd binary is built with the help of several patches to third party packages, which ensure
the released code is buildable and debuggable. These patches are available and distributed from
http://www.apache.org/dist/httpd/binaries/win32/patches_applied/ and are recommended to be applied to obtain
identical results as the "official" ASF distributed binaries.

e Microsoft Visual C++ 6.0 (Visual Studio 97) or later.

Apache can be built using the command line tools, or from within the Visual Studio IDE Workbench. The
command line build requires the environment to reflect the PATH, INCLUDE, LIB and other variables that can
be configured with the vcvars32.bat script.

:You may want the Visual Studio Processor Pack for your older version of Visual Studio, or a
full (not Express) version of newer Visual Studio editions, for the ml.exe assembler. This will
allow you to build OpenSSL, if desired, using the more efficient assembly code implementa-
tion.

ﬁOnly the Microsoft compiler tool chain is actively supported by the active httpd contributors.
Although the project regularly accepts patches to ensure MinGW and other alternative builds
work and improve upon them, they are not actively maintained and are often broken in the
course of normal development.

e Updated Microsoft Windows Platform SDK, February 2003 or later.

An appropriate Windows Platform SDK is included by default in the full (not express/lite) versions of Visual
C++ 7.1 (Visual Studio 2002) and later, these users can ignore these steps unless explicitly choosing a newer or
different version of the Platform SDK.

To use Visual C++ 6.0 or 7.0 (Studio 2000 .NET), the Platform SDK environment must be prepared using the
setenv.bat script (installed by the Platform SDK) before starting the command line build or launching the
msdev/devenv GUI environment. Installing the Platform SDK for Visual Studio Express versions (2003 and
later) should adjust the default environment appropriately.

"c:\Program Files\Microsoft Visual Studio\VC98\Bin\VCVARS32"
"c:\Program Files\Platform SDK\setenv.bat"

276 CHAPTER 7. PLATFORM-SPECIFIC NOTES

e Perl and awk

Several steps recommended here require a perl interpreter during the build preparation process, but it is otherwise
not required.

To install Apache within the build system, several files are modified using the awk . exe utility. awk was chosen
since it is a very small download (compared with Perl or WSH/VB) and accomplishes the task of modifying
configuration files upon installation. Brian Kernighan’s http://www.cs.princeton.edu/"bwk/btl.mirror/ site has
a compiled native Win32 binary, http://www.cs.princeton.edu/"bwk/btl.mirror/awk95.exe which you must save
with the name awk . exe (rather than awk 95 . exe).

élf awk.exe is not found, Makefile.win’s install target will not perform substitutions in the in-
stalled .conf files. You must manually modify the installed .conf files to allow the server to
start. Search and replace all " @token@ " tags as appropriate.

jThe Visual Studio IDE will only find awk . exe from the PATH, or executable path specified
in the menu option Tools -> Options -> (Projects ->) Directories. Ensure awk.exe is in your
system path.

:> Also note that if you are using Cygwin tools (http://www.cygwin.com/) the awk utility is named
gawk .exe and that the file awk . exe is really a symlink to the gawk . exe file. The Win-
dows command shell does not recognize symlinks, and because of this building InstallBin will
fail. A workaround is to delete awk . exe from the cygwin installation and copy gawk . exe
to awk . exe. Also note the cygwin/mingw ports of gawk 3.0.x were buggy, please upgrade to
3.1.x before attempting to use any gawk port.

e [Optional] zlib library (for MOD_DEFLATE)

Zlib must be installed into a srclib subdirectory named z1ib. This must be built in-place. Zlib can be
obtained from http://www.zlib.net/ — the MOD_DEFLATE is confirmed to work correctly with version 1.2.3.

nmake -f win32\Makefile.msc

nmake -f win32\Makefile.msc test

e [Optional] OpenSSL libraries (for MOD_SSL and ab . exe with ssl support)

The OpenSSL library is cryptographic software. The country in which you currently reside
may have restrictions on the import, possession, use, and/or re-export to another country, of en-
cryption software. BEFORE using any encryption software, please check your country’s laws,
regulations and policies concerning the import, possession, or use, and re-export of encryption
software, to see if this is permitted. See http://www.wassenaar.org/ for more information.

Configuring and building OpenSSL requires perl to be installed.

OpenSSL must be installed into a srclib subdirectory named openssl, obtained from
http://www.openssl.org/source/, in order to compile MOD_SSL or the abs.exe project, which is ab.c
with SSL support enabled. To prepare OpenSSL to be linked to Apache mod_ssl or abs.exe, and disable patent
encumbered features in OpenSSL, you might use the following build commands:

perl Configure no-rcb5 no-idea enable-mdc2 enable-zlib VC-WIN32
-Ipath/to/srclib/zlib -Lpath/to/srclib/zlib

ms\domasm.bat

nmake —-f ms\ntdll.mak

jlt is not advisable to use zlib-dynamic, as that transfers the cost of deflating SSL streams to
the first request which must load the zlib dll. Note the suggested patch enables the -L flag to
work with windows builds, corrects the name of zdll.lib and ensures .pdb files are generated
for troubleshooting. If the assembler is not installed, you would add no-asm above and use
ms\do_ms.bat instead of the ms\do_masm.bat script.

7.3. COMPILING APACHE FOR MICROSOFT WINDOWS 277

e [Optional] Database libraries (for MOD_DBD and MOD_AUTHN_DBM)

The apr-util library exposes dbm (keyed database) and dbd (query oriented database) client functionality to the
httpd server and its modules, such as authentication and authorization. The sdbm dbm and odbc dbd providers
are compiled unconditionally.

The dbd support includes the Oracle instantclient package, MySQL, PostgreSQL and sqlite. To build these all,
for example, set up the LIB to include the library path, INCLUDE to include the headers path, and PATH to
include the dlI bin path of all four SDK’s, and set the DBD_LIST environment variable to inform the build which
client driver SDKSs are installed correctly, e.g.;

set DBD_.LIST=sqglite3 pgsgl oracle mysqgl

Similarly, the dbm support can be extended with DBM_LIST to build a Berkeley DB provider (db) and/or gdbm
provider, by similarly configuring LIB, INCLUDE and PATH first to ensure the client library libs and headers
are available.

[set DBM.LIST=db gdbm

:>Depending on the choice of database distributions, it may be necessary to change the actual
link target name (e.g. gdbm.lib vs. libgdb.lib) that are listed in the corresponding .dsp/.mak
files within the directories srclib\apr-util\dbd or ...\dbm.

See the README-win32.txt file for more hints on obtaining the various database driver SDKs.

Building from Unix sources

The policy of the Apache HTTP Server project is to only release Unix sources. Windows source packages made
available for download have been supplied by volunteers and may not be available for every release. You can still
build the server on Windows from the Unix source tarball with just a few additional steps.

1. Download and unpack the Unix source tarball for the latest version.

2. Download and unpack the Unix source tarball for latest version of APR, AR-Util and APR-Iconv, place these
sources in directories httpd-2.x.x\srclib\apr, httpd-2.x.x\srclib\apr-util and httpd-2.x.x\ srclib\apr-iconv

3. Open a Command Prompt and CD to the httpd-2.x.x folder

4. Run the line endings conversion utility at the prompt;

perl srclib\apr\build\lineends.pl

You can now build the server with the Visual Studio 6.0 development environment using the IDE. Command-Line
builds of the server are not possible from Unix sources unless you export .mak files as explained below.

278 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Command-Line Build

Makefile.win is the top level Apache makefile. To compile Apache on Windows, simply use one of the following
commands to build the release or debug flavor:

nmake /f Makefile.win _apacher

nmake /f Makefile.win _apached

Either command will compile Apache. The latter will disable optimization of the resulting files, making it easier to
single step the code to find bugs and track down problems.

You can add your apr-util dbd and dbm provider choices with the additional make (environment) variables DBD_LIST
and DBM_LIST, see the comments about [Optional] Database libraries, above. Review the initial comments in Make-
file.win for additional options that can be provided when invoking the build.

Developer Studio Workspace IDE Build

Apache can also be compiled using VC++’s Visual Studio development environment. To simplify this process, a Visual
Studio workspace, Apache . dsw, is provided. This workspace exposes the entire list of working . dsp projects that
are required for the complete Apache binary release. It includes dependencies between the projects to assure that they
are built in the appropriate order.

Open the Apache . dsw workspace, and select InstallBin (Release or Debug build, as desired) as the Active
Project. InstallBin causes all related project to be built, and then invokes Makefile.win to move the compiled
executables and dlls. You may personalize the INSTD IR= choice by changing InstallBin’s Settings, General tab,
Build command line entry. INSTDIR defaults to the /Apache?2 directory. If you only want a test compile (without
installing) you may build the Bui1dBin project instead.

The .dsp project files are distributed in Visual Studio 6.0 (98) format. Visual C++ 5.0 (97) will recognize them.
Visual Studio 2002 (.NET) and later users must convert Apache.dsw plus the .dsp files into an Apache.sln
plus .msproj files. Be sure you reconvert the .msproj file again if its source .dsp file changes! This is really
trivial, just open Apache . dsw in the VC++ 7.0 IDE once again and reconvert.

:/>There is a flaw in the .vcproj conversion of .dsp files. devenv.exe will mis-parse the /D flag for
RC flags containing long quoted /D’efines which contain spaces. The command:

’ perl srclib\apr\build\cvtdsp.pl -2005

will convert the /D flags for RC flags to use an alternate, parseable syntax; unfortunately this
syntax isn’t supported by Visual Studio 97 or its exported .mak files. These /D flags are used to
pass the long description of the mod_apachemodule.so files to the shared .rc resource version-
identifier build.

Visual Studio 2002 (.NET) and later users should also use the Build menu, Configuration Manager dialog to uncheck
both the Debug and Release Solution modules abs, MOD_DEFLATE and MOD_SSL components, as well as ev-
ery component starting with apr_db*. These modules are built by invoking nmake, or the IDE directly with the
BinBuild target, which builds those modules conditionally if the src1ib directories openssl and/or z1ib exist,
and based on the setting of DBD_LIST and DBM_LIST environment variables.

Exporting command-line .mak files

Exported .mak files pose a greater hassle, but they are required for Visual C++ 5.0 users to build MOD_SSL, abs (ab
with SSL support) and/or MOD_DEFLATE. The .mak files also support a broader range of C++ tool chain distributions,
such as Visual Studio Express.

7.3. COMPILING APACHE FOR MICROSOFT WINDOWS 279

You must first build all projects in order to create all dynamic auto-generated targets, so that dependencies can be
parsed correctly. Build the entire project from within the Visual Studio 6.0 (98) IDE, using the BuildAll target,
then use the Project Menu Export for all makefiles (checking on "with dependencies".) Run the following command
to correct absolute paths into relative paths so they will build anywhere:

perl srclib\apr\build\fixwin32mak.pl

You must type this command from the top level directory of the httpd source tree. Every .mak and . dep project file
within the current directory and below will be corrected, and the timestamps adjusted to reflect the . dsp.

Always review the generated .mak and . dep files for Platform SDK or other local, machine specific file paths. The
DevStudio\Common\MSDev98\bin\ (VC6) directory contains a sysincl.dat file, which lists all exceptions.
Update this file (including both forward and backslashed paths, such as both sys/time.h and sys\time.h) to
ignore such newer dependencies. Including local-install paths in a distributed .mak file will cause the build to fail
completely.

If you contribute back a patch that revises project files, we must commit project files in Visual Studio 6.0 format.
Changes should be simple, with minimal compilation and linkage flags that can be recognized by all Visual Studio
environments.

Installation

Once Apache has been compiled, it needs to be installed in its server root directory. The default is the \Apache?2
directory, of the same drive.

To build and install all the files into the desired folder dir automatically, use one of the following nmake commands:

nmake /f Makefile.win installr INSTDIR=dir
nmake /f Makefile.win installd INSTDIR=dir

The dir argument to INSTDIR provides the installation directory; it can be omitted if Apache is to be installed into
\Apache22 (of the current drive).

Warning about building Apache from the development tree

:>Note only the . dsp files are maintained between release builds. The .mak files are NOT
regenerated, due to the tremendous waste of reviewer’s time. Therefore, you cannot rely on the
NMAKE commands above to build revised . dsp project files unless you then export all . mak
files yourself from the project. This is unnecessary if you build from within the Microsoft
Developer Studio environment.

Building httpd with cmake

The primary documentation for this build mechanism is in the README . cmake file in the source distribution. Refer
to that file for detailed instructions.

Building httpd with cmake requires building APR and APR-util separately. Refer to their README . cmake files for
instructions.

The primary limitations of the cmake-based build are inherited from the APR-util project, and are listed below because
of their impact on httpd:

280 CHAPTER 7. PLATFORM-SPECIFIC NOTES

e No cmake build for the APR-iconv subproject is available, and the APR-util cmake build cannot consume an
existing APR-iconv build. Thus, MOD_CHARSET_LITE and possibly some third-party modules cannot be used.

e The cmake build for the APR-util subproject does not support most of the optional DBM and DBD libraries
supported by the included Visual Studio project files. This limits the database backends supported by a number
of bundled and third-party modules.

7.4. USING APACHE WITH RPM BASED SYSTEMS (REDHAT / CENTOS / FEDORA) 281

7.4 Using Apache With RPM Based Systems (Redhat / CentOS / Fedora)

While many distributions make Apache httpd available as operating system supported packages, it can sometimes be
desirable to install and use the canonical version of Apache httpd on these systems, replacing the natively provided
versions of the packages.

While the Apache httpd project does not currently create binary RPMs for the various distributions out there, it is easy
to build your own binary RPMs from the canonical Apache httpd tarball.

This document explains how to build, install, configure and run Apache httpd 2.4 under Unix systems supporting the
RPM packaging format.

Creating a Source RPM

The Apache httpd source tarball can be converted into an SRPM as follows:

’rpmbuild —-ts httpd-2.4.x.tar.bz2

Building RPMs

RPMs can be built directly from the Apache httpd source tarballs using the following command:

rpmbuild -tb httpd-2.4.x.tar.bz2

Corresponding "-devel" packages will be required to be installed on your build system prior to building the RPMs,
the rpmbuild command will automatically calculate what RPMs are required and will list any dependencies that are
missing on your system. These "-devel" packages will not be required after the build is completed, and can be safely
removed.

If successful, the following RPMs will be created:

httpd-2.4.x-1.i686.rpm The core server and basic module set.
httpd-debuginfo-2.4.x-1.i686.rpm Debugging symbols for the server and all modules.
httpd-devel-2.4.x-1.i686.rpm Headers and development files for the server.
httpd-manual-2.4.x-1.i686.rpm The webserver manual.
httpd-tools-2.4.x-1.i686.rpm Supporting tools for the webserver.

mod_authnz ldap-2.4.x-1.i686.rpm MOD_LDAP and MOD_AUTHNZ_LDAP, with corresponding dependency on
openldap.

mod_lua-2.4.x-1.i686.rpm MOD_LUA module, with corresponding dependency on lua.
mod_proxy_html-2.4.x-1.i686.rpm MOD_PROXY_HTML module, with corresponding dependency on libxml2.
mod_socache_dc-2.4.x-1.i686.rpm MOD_SOCACHE_DC module, with corresponding dependency on distcache.

mod_ssl-2.4.x-1.i686.rpm MOD_SSL module, with corresponding dependency on openssl.

282 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Installing the Server

The ht t pd RPM is the only RPM necessary to get a basic server to run. Install it as follows:

rpm —-U httpd-2.4.x-1.1686.rpm

Self contained modules are included with the server. Modules that depend on external libraries are provided as separate
RPMs to install if needed.

Configuring the Default Instance of Apache httpd

The default configuration for the server is installed by default beneath the /et c/httpd directory, with logs writ-
ten by default to /var/log/httpd. The environment for the webserver is set by default within the optional
/etc/sysconfig/httpd file.

Start the server as follows:

’service httpd restart

Configuring Additional Instances of Apache httpd on the Same Machine

It is possible to configure additional instances of the Apache httpd server running independently alongside each other
on the same machine. These instances can have independent configurations, and can potentially run as separate users
if so configured.

This was done by making the httpd startup script aware of its own name. This name is then used to find the environment
file for the server, and in turn, the server root of the server instance.

To create an additional instance called ht tpd-additional, follow these steps:

e Create a symbolic link to the startup script for the additional server:

In -s /etc/rc.d/init.d/httpd /etc/rc.d/init.d/httpd-additional
chkconfig --add httpd-additional

e Create an environment file for the server, using the /etc/sysconfig/httpd file as a template:

template from httpd
cp /etc/sysconfig/httpd /etc/sysconfig/httpd-additional

blank template
touch /etc/sysconfig/httpd-additional

Edit /etc/sysconfig/httpd-additional and pass the server root of the new server instance within
the OPTIONS environment variable.

OPTIONS="-d /etc/httpd-additional -f conf/httpd-additional.conf"

7.4. USING APACHE WITH RPM BASED SYSTEMS (REDHAT / CENTOS / FEDORA) 283

e Edit the server configuration file /etc/httpd-additional/conf/httpd-additional.conf toen-
sure the correct ports and paths are configured.

e Start the server as follows:

service httpd-additional restart

e Repeat this process as required for each server instance.

284 CHAPTER 7. PLATFORM-SPECIFIC NOTES

7.5 Using Apache With Novell NetWare

This document explains how to install, configure and run Apache 2.0 under Novell NetWare 6.0 and above. If you find
any bugs, or wish to contribute in other ways, please use our bug reporting page.’

The bug reporting page and dev-httpd mailing list are not provided to answer questions about configuration or run-
ning Apache. Before you submit a bug report or request, first consult this document, the Frequently Asked Ques-
tions® page and the other relevant documentation topics. If you still have a question or problem, post it to the
novell.devsup.webserver” newsgroup, where many Apache users are more than willing to answer new and obscure
questions about using Apache on NetWare.

Most of this document assumes that you are installing Apache from a binary distribution. If you want to compile
Apache yourself (possibly to help with development, or to track down bugs), see the section on Compiling Apache for
NetWare below.

Requirements

Apache 2.0 is designed to run on NetWare 6.0 service pack 3 and above. If you are running a service pack less than
SP3, you must install the latest NetWare Libraries for C (LibC)'°.

NetWare service packs are available here!'.

Apache 2.0 for NetWare can also be run in a NetWare 5.1 environment as long as the latest service pack or the latest
version of the NetWare Libraries for C (LibC)'? has been installed . WARNING: Apache 2.0 for NetWare has not
been targeted for or tested in this environment.

Downloading Apache for NetWare

Information on the latest version of Apache can be found on the Apache web server at http://www.apache.org/. This
will list the current release, any more recent alpha or beta-test releases, together with details of mirror web and
anonymous ftp sites. Binary builds of the latest releases of Apache 2.0 for NetWare can be downloaded from here'?.

Installing Apache for NetWare

There is no Apache install program for NetWare currently. If you are building Apache 2.0 for NetWare from source,
you will need to copy the files over to the server manually.

Follow these steps to install Apache on NetWare from the binary download (assuming you will install to
sys:/apache?2):

e Unzip the binary download file to the root of the SYS: volume (may be installed to any volume)

o Edit the httpd. conf file setting SERVERROOT and SERVERNAME along with any file path values to reflect
your correct server settings

e Add SYS:/APACHE? to the search path, for example:

SEARCH ADD SYS:\APACHEZ

7http://httpd.apache.org/bug_report.html
8http://wiki.apache.org/httpd/FAQ
9news://developer-forums.novell.com/novell.devsup.webserver
1Ohttp://developer.novell.com/ndk/libc.htm
http://support.novell.com/misc/patlst.htm#nw
2http://developer.novell.com/ndk/libe.htm
Bhttp://www.apache.org/dist/httpd/binaries/netware

http://httpd.apache.org/bug_report.html
http://wiki.apache.org/httpd/FAQ
news://developer-forums.novell.com/novell.devsup.webserver
http://developer.novell.com/ndk/libc.htm
http://support.novell.com/misc/patlst.htm#nw
http://developer.novell.com/ndk/libc.htm
http://www.apache.org/dist/httpd/binaries/netware

7.5. USING APACHE WITH NOVELL NETWARE 285

Follow these steps to install Apache on NetWare manually from your own build source (assuming you will install to
sys:/apache?2):

o Create a directory called Apache2 on a NetWare volume
e Copy APACHE2 .NLM, APRLIB.NLMto SYS:/APACHE?2
o Create a directory under SYS: /APACHE?2 called BIN

e Copy HTDIGEST.NLM, HTPASSWD.NLM, HTDBM.NLM, LOGRES.NLM, ROTLOGS.NLM to
SYS:/APACHE2/BIN

e Create a directory under SYS: /APACHE?2 called CONF

e Copy the HTTPD-STD . CONF file to the SYS: /APACHE2 /CONF directory and rename to HTTPD . CONF
e Copy the MIME . TYPES, CHARSET . CONV and MAGIC files to SYS: /APACHE2 /CONF directory

e Copy all files and subdirectories in \HTTPD—-2.0\DOCS\ICONS to SYS:/APACHE2/ICONS

e Copy all files and subdirectories in \HTTPD—-2 . 0\DOCS\MANUAL to SYS: /APACHE2 /MANUAL

e Copy all files and subdirectories in \HTTPD—-2.0\DOCS\ERROR to SYS: /APACHE2/ERROR

e Copy all files and subdirectories in \HTTPD-2.0\DOCS\DOCROOT to SYS: /APACHE2/HTDOCS

e Create the directory SYS: /APACHE2/LOGS on the server

e Create the directory SYS: /APACHE2/CGI-BIN on the server

e Create the directory SYS: /APACHE2/MODULES and copy all nlm modules into the modules directory

e Edit the HTTPD.CONF file searching for all @@Value@@ markers and replacing them with the appropriate
setting

e Add SYS:/APACHE?2 to the search path, for example:

SEARCH ADD SYS:\APACHEZ

Apache may be installed to other volumes besides the default SYS volume.

During the build process, adding the keyword "install" to the makefile command line will automatically produce a
complete distribution package under the subdirectory DIST. Install Apache by simply copying the distribution that
was produced by the makfiles to the root of a NetWare volume (see: Compiling Apache for NetWare below).

Running Apache for NetWare

To start Apache just type apache at the console. This will load apache in the OS address space. If you prefer to load
Apache in a protected address space you may specify the address space with the load statement as follows:

load address space = apache2 apache?2

This will load Apache into an address space called apache2. Running multiple instances of Apache concurrently on
NetWare is possible by loading each instance into its own protected address space.

After starting Apache, it will be listening to port 80 (unless you changed the LISTEN directive in the configuration
files). To connect to the server and access the default page, launch a browser and enter the server’s name or address.
This should respond with a welcome page, and a link to the Apache manual. If nothing happens or you get an error,
look in the error_log file in the 1ogs directory.

Once your basic installation is working, you should configure it properly by editing the files in the conf directory.

To unload Apache running in the OS address space just type the following at the console:

286 CHAPTER 7. PLATFORM-SPECIFIC NOTES

’unload apache?2 ‘

or

’apache2 shutdown ‘

If apache is running in a protected address space specify the address space in the unload statement:

’unload address space = apache2 apache2 ‘

When working with Apache it is important to know how it will find the configuration files. You can specify a config-
uration file on the command line in two ways:

e —f specifies a path to a particular configuration file

’apacheZ -f "vol:/my server/conf/my.conf" ‘

’apache -f test/test.conf ‘

In these cases, the proper SERVERROOT should be set in the configuration file.

If you don’t specify a configuration file name with —f, Apache will use the file name compiled into the
server, usually conf/httpd.conf. Invoking Apache with the -V switch will display this value labeled as
SERVER_CONFIG_FILE. Apache will then determine its SERVERROOT by trying the following, in this order:

e A ServerRoot directive via a —C switch.

e The —d switch on the command line.

Current working directory

e The server root compiled into the server.

The server root compiled into the server is usually sys: /apache2. invoking apache with the -V switch will display
this value labeled as HTTPD_ROOT.

Apache 2.0 for NetWare includes a set of command line directives that can be used to modify or display information
about the running instance of the web server. These directives are only available while Apache is running. Each of
these directives must be preceded by the keyword APACHE?2.

RESTART Instructs Apache to terminate all running worker threads as they become idle, reread the configuration
file and restart each worker thread based on the new configuration.

VERSION Displays version information about the currently running instance of Apache.
MODULES Displays a list of loaded modules both built-in and external.
DIRECTIVES Displays a list of all available directives.

SETTINGS Enables or disables the thread status display on the console. When enabled, the state of each running
threads is displayed on the Apache console screen.

SHUTDOWN Terminates the running instance of the Apache web server.
HELP Describes each of the runtime directives.
By default these directives are issued against the instance of Apache running in the OS address space. To issue a

directive against a specific instance running in a protected address space, include the -p parameter along with the name
of the address space. For more information type "apache2 Help" on the command line.

7.5. USING APACHE WITH NOVELL NETWARE 287

Configuring Apache for NetWare

Apache is configured by reading configuration files usually stored in the conf directory. These are the same as files
used to configure the Unix version, but there are a few different directives for Apache on NetWare. See the Apache
module documentation (p. 1101) for all the available directives.

The main differences in Apache for NetWare are:

e Because Apache for NetWare is multithreaded, it does not use a separate process for each request, as Apache
does on some Unix implementations. Instead there are only threads running: a parent thread, and multiple child
or worker threads which handle the requests.

Therefore the "process"-management directives are different:

MAXCONNECTIONSPERCHILD - Like the Unix directive, this controls how many connections a worker thread
will serve before exiting. The recommended default, MaxConnectionsPerChild O, causes the thread to
continue servicing request indefinitely. It is recommended on NetWare, unless there is some specific reason,
that this directive always remain set to O.

STARTTHREADS - This directive tells the server how many threads it should start initially. The recommended
defaultis StartThreads 50.

MINSPARETHREADS - This directive instructs the server to spawn additional worker threads if the number of
idle threads ever falls below this value. The recommended default is MinSpareThreads 10.

MAXSPARETHREADS - This directive instructs the server to begin terminating worker threads if the number of
idle threads ever exceeds this value. The recommended default is MaxSpareThreads 100.

MAXTHREADS - This directive limits the total number of work threads to a maximum value. The recommended
default is ThreadsPerChild 250.

THREADSTACKSIZE - This directive tells the server what size of stack to use for the individual worker thread.
The recommended default is ThreadStackSize 65536.

e The directives that accept filenames as arguments must use NetWare filenames instead of Unix names. However,
because Apache uses Unix-style names internally, forward slashes must be used rather than backslashes. It is
recommended that all rooted file paths begin with a volume name. If omitted, Apache will assume the SYS:
volume which may not be correct.

e Apache for NetWare has the ability to load modules at runtime, without recompiling the server. If Apache is
compiled normally, it will install a number of optional modules in the \Apache2\modules directory. To
activate these, or other modules, the LOADMODULE directive must be used. For example, to active the status
module, use the following:

LoadModule status_.module modules/status.nlm

Information on creating loadable modules (p. 908) is also available.

Additional NetWare specific directives:
e CGIMAPEXTENSION - This directive maps a CGI file extension to a script interpreter.
e SECURELISTEN - Enables SSL encryption for a specified port.

e NWSSLTRUSTEDCERTS - Adds trusted certificates that are used to create secure connections to proxied
servers.

e NWSSLUPGRADEABLE - Allow a connection created on the specified address/port to be upgraded to an SSL
connection.

288 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Compiling Apache for NetWare

Compiling Apache requires MetroWerks CodeWarrior 6.x or higher. Once Apache has been built, it can be installed
to the root of any NetWare volume. The default is the sys: /Apache?2 directory.

Before running the server you must fill out the con £ directory. Copy the file H-TTPD—STD . CONF from the distribution
conf directory and rename it to HTTPD . CONF. Edit the HTTPD . CONF file searching for all @@Value@@ markers
and replacing them with the appropriate setting. Copy over the conf/magic and conf/mime. types files as well.
Alternatively, a complete distribution can be built by including the keyword install when invoking the makefiles.

Requirements:

The following development tools are required to build Apache 2.0 for NetWare:

e Metrowerks CodeWarrior 6.0 or higher with the NetWare PDK 3.0'* or higher.
e NetWare Libraries for C (LibC)"

e LDAP Libraries for C'¢

e ZLIB Compression Library source code'”

e AWK utility (awk, gawk or similar). AWK can be downloaded from
http://developer.novell.com/ndk/apache.htm. ~ The utility must be found in your windows path and
must be named awk . exe.

e To build using the makefiles, you will need GNU make version 3.78.1 (GMake) available at
http://developer.novell.com/ndk/apache.htm.

Building Apache using the NetWare makefiles:

e Set the environment variable NOVELLLIBC to the location of the NetWare Libraries for C SDK, for example:

Set NOVELLLIBC=c:\novell\ndk\libc

e Set the environment variable METROWERKS to the location where you installed the Metrowerks CodeWarrior
compiler, for example:

Set METROWERKS=C:\Program Files\Metrowerks\CodeWarrior

If you installed to the default location C: \Program Files\Metrowerks\CodeWarrior, youdon’t need
to set this.

e Set the environment variable LDAPSDK to the location where you installed the LDAP Libraries for C, for
example:

Set LDAPSDK=c:\Novell\NDK\cldapsdk\NetWare\libc

e Set the environment variable ZLIBSDK to the location where you installed the source code for the ZLib Library,
for example:

http://developer.novell.com/ndk/cwpdk.htm
5http://developer.novell.com/ndk/libc.htm
16http://developer.novell.com/ndk/cldap.htm
Thttp://www.gzip.org/zlib/

http://developer.novell.com/ndk/cwpdk.htm
http://developer.novell.com/ndk/libc.htm
http://developer.novell.com/ndk/cldap.htm
http://www.gzip.org/zlib/

7.5. USING APACHE WITH NOVELL NETWARE 289

Set ZLIBSDK=D:\NOVELL\zlib

e Set the environment variable PCRESDK to the location where you installed the source code for the PCRE
Library, for example:

Set PCRESDK=D:\NOVELL\pcre

e Set the environment variable AP_WORK to the full path of the ht t pd source code directory.

’Set AP_WORK=D:\httpd-2.0.x

e Set the environment variable APR_WORK to the full path of the apr source code directory. Typically
\httpd\srclib\apr but the APR project can be outside of the httpd directory structure.

’Set APR_WORK=D:\apr-1.x.x

e Set the environment variable APU_WORK to the full path of the apr-util source code directory. Typically
\httpd\srclib\apr-util but the APR-UTIL project can be outside of the httpd directory structure.

’Set APU_WORK=D:\apr-util-1.x.x

e Make sure that the path to the AWK utility and the GNU make utility (gmake . exe) have been included in the
system’s PATH environment variable.

e Download the source code and unzip to an appropriate directory on your workstation.

e Change directory to \ht t pd—2 . 0 and build the prebuild utilities by running "gmake —-f nwgnumakefile
prebuild". This target will create the directory \httpd-2.0\nwprebuild and copy each of the utilities
to this location that are necessary to complete the following build steps.

e Copy the files \httpd-2.0\nwprebuild\GENCHARS.nlm and
\httpd-2.0\nwprebuild\DFTABLES.nlm to the SYS: volume of a NetWare server and run
them using the following commands:

SYS:\genchars > sys:\test_char.h
SYS:\dftables sys:\chartables.c

e Copy the files test_char.h and chartables.c to the directory \httpd-2.0\os\netware on the
build machine.

e Change directory to \httpd-2.0 and build Apache by running "gmake -f nwgnumakefile". You can
create a distribution directory by adding an install parameter to the command, for example:

gmake -f nwgnumakefile install

290 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Additional make options

e gmake -f nwgnumakefileBuilds release versions of all of the binaries and copies them to a \release
destination directory.

e gmake -f nwgnumakefile DEBUG=1Builds debug versions of all of the binaries and copies them to a
\debug destination directory.

e gmake -f nwgnumakefile installCreatesacomplete Apache distribution with binaries, docs and ad-
ditional support files in a \dist\Apache2 directory.

e gmake -f nwgnumakefile prebuildBuilds all of the prebuild utilities and copies them to the
\nwprebuild directory.

e gmake -f nwgnumakefile installdevSame asinstall butalso createsa\1ib and \include direc-
tory in the destination directory and copies headers and import files.

e gmake —-f nwgnumakefile cleanCleans all object files and binaries from the \release.o or
\debug. o build areas depending on whether DEBUG has been defined.

e gmake -f nwgnumakefile clobber_allSame as clean and also deletes the distribution directory if it
exists.

Additional environment variable options

e To build all of the experimental modules, set the environment variable EXPERIMENTAL:

[Set EXPERIMENTAL=1 \

e To build Apache using standard BSD style sockets rather than Winsock, set the environment variable
USE_STDSOCKETS:

[Set USE_STDSOCKETS=1 \

Building mod_ssl for the NetWare platform

By default Apache for NetWare uses the built-in module MOD_NW_SSL to provide SSL services. This module simply
enables the native SSL services implemented in NetWare OS to handle all encryption for a given port. Alternatively,
mod_ssl can also be used in the same manner as on other platforms.

Before mod_ssl can be built for the NetWare platform, the OpenSSL libraries must be provided. This can be done
through the following steps:

e Download the recent OpenSSL 0.9.8 release source code from the OpenSSL Source'® page (older 0.9.7 versions
need to be patched and are therefore not recommended).

o Edit the file NetWare/set_env.bat and modify any tools and utilities paths so that they correspond to your
build environment.

e From the root of the OpenSSL source directory, run the following scripts:

Netware\set_env netware-libc

Netware\build netware-libc

18http://www.openssl.org/source/

http://www.openssl.org/source/

7.5. USING APACHE WITH NOVELL NETWARE 291

For performance reasons you should enable to build with ASM code. Download NASM from the SF site'”.
Then configure OpenSSL to use ASM code:

’Netware\build netware—libc nw-nasm enable-mdc2 enable-md5

Warning: dont use the CodeWarrior Assembler - it produces broken code!

o Before building Apache, set the environment variable OSSLSDK to the full path to the root of the openssl source
code directory, and set WITH_MOD_SSL to 1.

Set OSSLSDK=d:\openssl-0.9.8x
Set WITH.MOD_SSL=1

9http://nasm.sourceforge.net/

http://nasm.sourceforge.net/

292 CHAPTER 7. PLATFORM-SPECIFIC NOTES
7.6 Running a High-Performance Web Server on HPUX

Date: Wed, 05 Nov 1997 16:59:34 -0800
From: Rick Jones <raj@cup.hp.com>
Reply-To: raj@cup.hp.com
Organization: Network Performance
Subject: HP-UX tuning tips

Here are some tuning tips for HP-UX to add to the tuning page.

For HP-UX 9.X: Upgrade to 10.20
For HP-UX 10.[00—01—10]: Upgrade to 10.20

For HP-UX 10.20:

Install the latest cumulative ARPA Transport Patch. This will allow you to configure the size of the TCP connection
lookup hash table. The default is 256 buckets and must be set to a power of two. This is accomplished with adb
against the *disc* image of the kernel. The variable name is tcp_hash_size. Notice that it’s critically important
that you use "W" to write a 32 bit quantity, not "w" to write a 16 bit value when patching the disc image because the
tcp-hash_size variable is a 32 bit quantity.

How to pick the value? Examine the output of ftp://ftp.cup.hp.com/dist/networking/tools/connhist and see how many
total TCP connections exist on the system. You probably want that number divided by the hash table size to be
reasonably small, say less than 10. Folks can look at HP’s SPECweb96 disclosures for some common settings. These
can be found at http://www.specbench.org/. If an HP-UX system was performing at 1000 SPECweb96 connections
per second, the TIME_WATIT time of 60 seconds would mean 60,000 TCP "connections" being tracked.

Folks can check their listen queue depths with ftp://ftp.cup.hp.com/dist/networking/misc/listeng.

If folks are running Apache on a PA-8000 based system, they should consider "chatr’ing" the Apache executable to
have a large page size. This would be "chatr +pi L <BINARY>". The GID of the running executable must have
MLOCK privileges. Setprivgrp (1m) should be consulted for assigning MLOCK. The change can be validated by
running Glance and examining the memory regions of the server(s) to make sure that they show a non-trivial fraction
of the text segment being locked.

If folks are running Apache on MP systems, they might consider writing a small program that uses mpct1 () to bind
processes to processors. A simple pid % numcpu algorithm is probably sufficient. This might even go into the
source code.

If folks are concerned about the number of FIN_.WAIT_2 connections, they can use nettune to shrink the value of
tcp_keepstart. However, they should be careful there - certainly do not make it less than oh two to four minutes.
If tcp-hash_size has been set well, it is probably OK to let the FIN_.WAIT_2’s take longer to timeout (perhaps
even the default two hours) - they will not on average have a big impact on performance.

There are other things that could go into the code base, but that might be left for another email. Feel free to drop me a
message if you or others are interested.

sincerely,
rick jones

http://www.netperf.org/netperf/

Chapter 8

Apache HTTP Server and Supporting
Programs

293

294 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS
8.1 Server and Supporting Programs

This page documents all the executable programs included with the Apache HTTP Server.

Index

httpd Apache hypertext transfer protocol server

apachectl Apache HTTP server control interface

ab Apache HTTP server benchmarking tool

apxs APache eXtenSion tool

configure Configure the source tree

dbmmanage Create and update user authentication files in DBM format for basic authentication
fcgistarter Start a FastCGI program

firehose Demultiplex a firehose from MOD_FIREHOSE

htcacheclean Clean up the disk cache

htdigest Create and update user authentication files for digest authentication
htdbm Manipulate DBM password databases.

htpasswd Create and update user authentication files for basic authentication
httxt2dbm Create dbm files for use with RewriteMap

logresolve Resolve hostnames for [P-addresses in Apache logfiles
log_server_status Periodically log the server’s status

rotatelogs Rotate Apache logs without having to kill the server
split-logfile Split a multi-vhost logfile into per-host logfiles

suexec Switch User For Exec

8.2.

HTTPD - APACHE HYPERTEXT TRANSFER PROTOCOL SERVER 295

8.2 httpd - Apache Hypertext Transfer Protocol Server

httpd is the Apache HyperText Transfer Protocol (HTTP) server program. It is designed to be run as a standalone
daemon process. When used like this it will create a pool of child processes or threads to handle requests.

In general, httpd should not be invoked directly, but rather should be invoked via apachectl on Unix-based
systems or as a service on Windows NT, 2000 and XP (p. 267) and as a console application on Windows 9x and ME
(p. 267) .

See also

e Starting Apache httpd (p. 27)
e Stopping Apache httpd (p. 29)
e Configuration Files (p. 32)

Platform-specific Documentation (p. 266)
e apachectl

Synopsis

httpd [-d serverroot] [—-f config] [-C directive] [-c

directive] [-D parameter] [-e level] [-E file] [-k

start |restart|graceful |stoplgraceful-stop] [-R directory] [-h] [-1
lfi-w1[1-sl]lt]lI[~v]I[-V]II[X]I[-M]I[-T]

On Windows systems (p. 267) , the following additional arguments are available:

httpd [-k installl|config|uninstall] [-n name] [-w]
Options
—-d serverroot Set the initial value for the SERVERROOT directive to serverroot. This can be overridden by the

-f

-e

ServerRoot directive in the configuration file. The defaultis /usr/local/apache?2.

config Uses the directives in the file config on startup. If config does not begin with a /, then it is taken to be a
path relative to the SERVERROOT. The default is conf/httpd.conf.

start |restart |graceful | stop|graceful-stop Signals httpd to start, restart, or stop. See Stop-
ping Apache httpd (p. 29) for more information.

directive Process the configuration directive before reading config files.
directive Process the configuration directive after reading config files.

parameter Sets a configuration parameter which can be used with <IFDEFINE> sections in the configuration
files to conditionally skip or process commands at server startup and restart. Also can be used to set certain less-
common startup parameters including -DNO_DETACH (prevent the parent from forking) and ~-DFOREGROUND
(prevent the parent from calling setsid () et al).

level Sets the LOGLEVEL to level during server startup. This is useful for temporarily increasing the verbosity
of the error messages to find problems during startup.

file Send error messages during server startup to file.

Output a short summary of available command line options.

296 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS
—1 Output a list of modules compiled into the server. This will not list dynamically loaded modules included using
the LOADMODULE directive.

—L Output a list of directives provided by static modules, together with expected arguments and places where the
directive is valid. Directives provided by shared modules are not listed.

—M Dump a list of loaded Static and Shared Modules.
—S Show the settings as parsed from the config file (currently only shows the virtualhost settings).
-T (Available in 2.3.8 and later) Skip document root check at startup/restart.

—t Run syntax tests for configuration files only. The program immediately exits after these syntax parsing tests with
either a return code of 0 (Syntax OK) or return code not equal to O (Syntax Error). If -D DUMP_VHOSTS is also
set, details of the virtual host configuration will be printed. If -D DUMP_MODULES is set, all loaded modules
will be printed. If -D DUMP_CERTS is set and MOD_SSL is used, configured SSL certificates will be printed. If
-D DUMP_CA__CERTS is set and MOD_SSL is used, configured SSL CA certificates and configured directories
containing SSL CA certificates will be printed.

—v Print the version of ht tpd, and then exit.
-V Print the version and build parameters of ht tpd, and then exit.

—X Run httpd in debug mode. Only one worker will be started and the server will not detach from the console.
The following arguments are available only on the Windows platform (p. 267) :

-k install|config|uninstall Install Apache httpd as a Windows NT service; change startup options for
the Apache httpd service; and uninstall the Apache httpd service.

-n name The name of the Apache httpd service to signal.

—w Keep the console window open on error so that the error message can be read.

8.3. AB - APACHE HTTP SERVER BENCHMARKING TOOL 297

8.3 ab - Apache HTTP server benchmarking tool

ab is a tool for benchmarking your Apache Hypertext Transfer Protocol (HTTP) server. It is designed to give you
an impression of how your current Apache installation performs. This especially shows you how many requests per
second your Apache installation is capable of serving.

See also

e httpd
Synopsis
ab [-A auth-username:password] [-b windowsize] [-B local-address
] [—c¢ concurrency] [-C cookie-name=value] [-d] [-e csv-file]
[-f protocol] [-g gnuplot-file] [-h] [-H custom-header] [-i]
[k1 [-1] [-m HTTP-method] [—-n requests] [-p POST-file] [-P
proxy—-auth-username:password] [-9 1 [-xr 1 [-s timeout] [-S] [-t
timelimit] [-T content-type] [—-u PUT-file] [-v verbosity] [-V 1 [-w
] [-x <table>-attributes] [X proxyl:port] 1 [-y <tr>-attributes] [-z
<td>-attributes] [-2 ciphersuite] [httpls]://]lhostnamel:port]/path
Options

—A auth-username:password Supply BASIC Authentication credentials to the server. The username and
password are separated by a single : and sent on the wire base64 encoded. The string is sent regardless of
whether the server needs it (i.e., has sent an 401 authentication needed).

-b windowsize Size of TCP send/receive buffer, in bytes.
-B local-address Address to bind to when making outgoing connections.
—c concurrency Number of multiple requests to perform at a time. Default is one request at a time.

—C cookie—-name=value Add a Cookie: line to the request. The argument is typically in the form of a
name=value pair. This field is repeatable.

—d Do not display the "percentage served within XX [ms] table". (legacy support).

—e csv-file Write a Comma separated value (CSV) file which contains for each percentage (from 1% to 100%)
the time (in milliseconds) it took to serve that percentage of the requests. This is usually more useful than the
“gnuplot’ file; as the results are already *binned’.

—-f protocol Specify SSL/TLS protocol (SSL2, SSL3, TLS1, TLS1.1, TLS1.2, or ALL).
TLS1.1 and TLS1.2 support available in 2.4.4 and later.

—-g gnuplot-file Write all measured values out as a “gnuplot’ or TSV (Tab separate values) file. This file can
easily be imported into packages like Gnuplot, IDL, Mathematica, Igor or even Excel. The labels are on the first
line of the file.

-h Display usage information.

-H custom-header Append extra headers to the request. The argument is typically in the form of a valid header
line, containing a colon-separated field-value pair (i.e., "Accept-Encoding: zip/zop;8bit").

—i Do HEAD requests instead of GET.

298 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

-k Enable the HTTP KeepAlive feature, i.e., perform multiple requests within one HTTP session. Default is no
KeepAlive.

—1 Do not report errors if the length of the responses is not constant. This can be useful for dynamic pages.
Auvailable in 2.4.7 and later.

-m HTTP-method Custom HTTP method for the requests.
Available in 2.4.10 and later.

-n requests Number of requests to perform for the benchmarking session. The default is to just perform a single
request which usually leads to non-representative benchmarking results.

—-p POST-file File containing data to POST. Remember to also set —T.
-P proxy-auth-username:password Supply BASIC Authentication credentials to a proxy en-route. The
username and password are separated by a single : and sent on the wire base64 encoded. The string is sent

regardless of whether the proxy needs it (i.e., has sent an 407 proxy authentication needed).

—qg When processing more than 150 requests, ab outputs a progress count on stderr every 10% or 100 requests or
so. The —q flag will suppress these messages.

-r Don’t exit on socket receive errors.

-s timeout Maximum number of seconds to wait before the socket times out. Default is 30 seconds.
Available in 2.4.4 and later.

—S Do not display the median and standard deviation values, nor display the warning/error messages when the average
and median are more than one or two times the standard deviation apart. And default to the min/avg/max values.

(legacy support).

-t timelimit Maximum number of seconds to spend for benchmarking. This implies a -n 50000 internally.
Use this to benchmark the server within a fixed total amount of time. Per default there is no timelimit.

-T content-type Content-type header to use for POST/PUT data, eg.
application/x-www—form—urlencoded. Defaultis text/plain.

—u PUT-file File containing data to PUT. Remember to also set —T.

—-v verbosity Set verbosity level - 4 and above prints information on headers, 3 and above prints response codes
(404, 200, etc.), 2 and above prints warnings and info.

-V Display version number and exit.
—w Print out results in HTML tables. Default table is two columns wide, with a white background.

-x <table>-attributes String to use as attributes for <table>. Attributes are inserted <table here
>.

-X proxy[:port] Use a proxy server for the requests.
-y <tr>-attributes String to use as attributes for <t r>.
-z <td>-attributes String to use as attributes for <td>.

—Z ciphersuite Specify SSL/TLS cipher suite (See openssl ciphers)

8.3. AB - APACHE HTTP SERVER BENCHMARKING TOOL 299

Output

The following list describes the values returned by ab:

Server Software The value, if any, returned in the server HTTP header of the first successful response. This includes
all characters in the header from beginning to the point a character with decimal value of 32 (most notably: a
space or CR/LF) is detected.

Server Hostname The DNS or IP address given on the command line

Server Port The port to which ab is connecting. If no port is given on the command line, this will default to 80 for
http and 443 for https.

SSL/TLS Protocol The protocol parameters negotiated between the client and server. This will only be printed if
SSL is used.

Document Path The request URI parsed from the command line string.

Document Length This is the size in bytes of the first successfully returned document. If the document length
changes during testing, the response is considered an error.

Concurrency Level The number of concurrent clients used during the test

Time taken for tests This is the time taken from the moment the first socket connection is created to the moment the
last response is received

Complete requests The number of successful responses received

Failed requests The number of requests that were considered a failure. If the number is greater than zero, another
line will be printed showing the number of requests that failed due to connecting, reading, incorrect content
length, or exceptions.

Write errors The number of errors that failed during write (broken pipe).

Non-2xx responses The number of responses that were not in the 200 series of response codes. If all responses were
200, this field is not printed.

Keep-Alive requests The number of connections that resulted in Keep-Alive requests

Total body sent If configured to send data as part of the test, this is the total number of bytes sent during the tests.
This field is omitted if the test did not include a body to send.

Total transferred The total number of bytes received from the server. This number is essentially the number of bytes
sent over the wire.

HTML transferred The total number of document bytes received from the server. This number excludes bytes
received in HTTP headers

Requests per second This is the number of requests per second. This value is the result of dividing the number of
requests by the total time taken

Time per request The average time spent per request. The first value is calculated with the formula concurrency
* timetaken » 1000 / done while the second value is calculated with the formula timetaken =
1000 / done

Transfer rate The rate of transfer as calculated by the formula totalread / 1024 / timetaken

300 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Bugs

There are various statically declared buffers of fixed length. Combined with the lazy parsing of the command line
arguments, the response headers from the server and other external inputs, this might bite you.

It does not implement HTTP/1.x fully; only accepts some ’expected’ forms of responses. The rather heavy use of
strstr (3) shows up top in profile, which might indicate a performance problem; i.e., you would measure the ab
performance rather than the server’s.

8.4. APACHECTL - APACHE HTTP SERVER CONTROL INTERFACE 301

8.4 apachectl - Apache HTTP Server Control Interface

apachectl is a front end to the Apache HyperText Transfer Protocol (HTTP) server. It is designed to help the
administrator control the functioning of the Apache httpd daemon.

The apachectl script can operate in two modes. First, it can act as a simple front-end to the ht tpd command
that simply sets any necessary environment variables and then invokes httpd, passing through any command line
arguments. Second, apachectl can act as a SysV init script, taking simple one-word arguments like start,
restart, and stop, and translating them into appropriate signals to ht tpd.

If your Apache installation uses non-standard paths, you will need to edit the apachect 1 script to set the appropriate
paths to the ht t pd binary. You can also specify any necessary httpd command line arguments. See the comments
in the script for details.

The apachectl script returns a 0 exit value on success, and >0 if an error occurs. For more details, view the
comments in the script.

See also

e Starting Apache (p. 27)

Stopping Apache (p. 29)

Configuration Files (p. 32)
Platform Docs (p. 266)
httpd

Synopsis

When acting in pass-through mode, apachect1 can take all the arguments available for the ht t pd binary.
apachectl [httpd-argument |
When acting in SysV init mode, apachect1 takes simple, one-word commands, defined below.

apachectl command

Options

Only the SysV init-style options are defined here. Other arguments are defined on the ht t pd manual page.

start Start the Apache httpd daemon. Gives an error if it is already running. This is equivalent to apachect1
-k start.

stop Stops the Apache httpd daemon. This is equivalent to apachectl -k stop.

restart Restarts the Apache httpd daemon. If the daemon is not running, it is started. This command automat-
ically checks the configuration files as in configtest before initiating the restart to make sure the daemon
doesn’t die. This is equivalent to apachectl -k restart.

fullstatus Displays a full status report from MOD_STATUS. For this to work, you need to have MOD_STATUS
enabled on your server and a text-based browser such as 1ynx available on your system. The URL used to
access the status report can be set by editing the STATUSURL variable in the script.

status Displays a brief status report. Similar to the fullstatus option, except that the list of requests currently
being served is omitted.

302 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

graceful Gracefully restarts the Apache httpd daemon. If the daemon is not running, it is started. This differs
from a normal restart in that currently open connections are not aborted. A side effect is that old log files will
not be closed immediately. This means that if used in a log rotation script, a substantial delay may be necessary
to ensure that the old log files are closed before processing them. This command automatically checks the
configuration files as in configtest before initiating the restart to make sure Apache doesn’t die. This is
equivalent to apachectl -k graceful.

graceful-stop Gracefully stops the Apache httpd daemon. This differs from a normal stop in that currently
open connections are not aborted. A side effect is that old log files will not be closed immediately. This is
equivalent to apachectl -k graceful-stop.

configtest Run a configuration file syntax test. It parses the configuration files and either reports Syntax Ok
or detailed information about the particular syntax error. This is equivalent to apachectl -t.

The following option was available in earlier versions but has been removed.

startssl To start httpd with SSL support, you should edit your configuration file to include the relevant directives
and then use the normal apachectl start.

8.5. APXS - APACHE EXTENSION TOOL 303
8.5 apxs - APache eXtenSion tool

apxs is a tool for building and installing extension modules for the Apache HyperText Transfer Protocol (HTTP)
server. This is achieved by building a dynamic shared object (DSO) from one or more source or object files which then
can be loaded into the Apache server under runtime via the LOADMODULE directive from MOD_SO.

So to use this extension mechanism your platform has to support the DSO feature and your Apache ht t pd binary has
to be built with the MOD_SO module. The apxs tool automatically complains if this is not the case. You can check
this yourself by manually running the command

$ httpd -1

The module MOD_SO should be part of the displayed list. If these requirements are fulfilled you can easily extend your
Apache server’s functionality by installing your own modules with the DSO mechanism by the help of this apxs tool:

$ apxs -i —a —-c mod_foo.c

gcc —fpic -DSHARED-MODULE -I/path/to/apache/include -c mod-foo.c

ld -Bshareable -o mod_-foo.so mod_-foo.o

cp mod_-foo.so /path/to/apache/modules/mod_foo.so

chmod 755 /path/to/apache/modules/mod-foo.so

[activating module ‘foo’ in /path/to/apache/etc/httpd.conf]

$ apachectl restart

/path/to/apache/sbin/apachectl restart: httpd not running, trying to

start

[Tue Mar 31 11:27:55 1998] [debug] mod.so.c(303) : loaded module
foo_module

/path/to/apache/sbin/apachectl restart: httpd started

$ -

The arguments files can be any C source file (.c), a object file (.0) or even a library archive (.a). The apxs tool
automatically recognizes these extensions and automatically used the C source files for compilation while just using
the object and archive files for the linking phase. But when using such pre-compiled objects make sure they are
compiled for position independent code (PIC) to be able to use them for a dynamically loaded shared object. For
instance with GCC you always just have to use —fpic. For other C compilers consult its manual page or at watch for
the flags apxs uses to compile the object files.

For more details about DSO support in Apache read the documentation of MOD_SO or perhaps even read the
src/modules/standard/mod_so. c source file.

See also

e apachectl

e httpd
Synopsis
apxs —-g [—-S name=value] —-n modname
apxs —-q [-v] [—-S name=value] query
apxs —-¢ [—-S name=value] [-o dsofile] [-I incdir] [-D name=value] [-L
libdir 1 [-1 libname] [-We¢,compiler-flags] [-Wl,linker-flags] files
apxs -i [—-S name=value] [—n modname] [-a] [-A] dso-file

apxs —-e [-S name=value] [—n modname] [—a] [-A] dso—-file

304 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Options
Common Options
-n modname This explicitly sets the module name for the —i (install) and —g (template generation) option. Use

this to explicitly specify the module name. For option —g this is required, for option —1i the apxs tool tries to
determine the name from the source or (as a fallback) at least by guessing it from the filename.

Query Options

—q Performs a query for variables and environment settings used to build httpd. When invoked without query
parameters, it prints all known variables and their values. The optional —v parameter formats the list output.

Use this to manually determine settings used to build the ht t pd that will load your module. For instance use

INC=-I‘apxs —qg INCLUDEDIR"

inside your own Makefiles if you need manual access to Apache’s C header files.

Configuration Options

—-S name=value This option changes the apxs settings described above.

Template Generation Options

—g This generates a subdirectory name (see option —n) and there two files: A sample module source file named
mod_name . c which can be used as a template for creating your own modules or as a quick start for playing
with the apxs mechanism. And a corresponding Makefile for even easier build and installing of this module.

DSO Compilation Options

—c This indicates the compilation operation. It first compiles the C source files (.c) of files into corresponding object
files (.0) and then builds a dynamically shared object in dsofile by linking these object files plus the remaining
object files (.0 and .a) of files. If no —o option is specified the output file is guessed from the first filename in
files and thus usually defaults to mod_name. so.

—-o dsofile Explicitly specifies the filename of the created dynamically shared object. If not specified and the
name cannot be guessed from the files list, the fallback name mod_unknown. so is used.

-D name=value This option is directly passed through to the compilation command(s). Use this to add your own
defines to the build process.

—I incdir This option is directly passed through to the compilation command(s). Use this to add your own include
directories to search to the build process.

-L libdir This option is directly passed through to the linker command. Use this to add your own library directo-
ries to search to the build process.

-1 libname This option is directly passed through to the linker command. Use this to add your own libraries to
search to the build process.

-Wc, compiler—-flags This option passes compiler-flags as additional flags to the libtool
—--mode=compile command. Use this to add local compiler-specific options.

8.5. APXS - APACHE EXTENSION TOOL 305

-W1, linker—flags This option passes linker-flags as additional flags to the 1ibtool —--mode=1ink com-
mand. Use this to add local linker-specific options.

—p This option causes apxs to link against the apr/apr-util libraries. This is useful when compiling helper programs
that use the apr/apr-util libraries.

DSO Installation and Configuration Options

—i This indicates the installation operation and installs one or more dynamically shared objects into the server’s
modules directory.

—a This activates the module by automatically adding a corresponding LOADMODULE line to Apache’s
httpd. conf configuration file, or by enabling it if it already exists.

—A Same as option —a but the created LOADMODULE directive is prefixed with a hash sign (#), i.e., the module is
just prepared for later activation but initially disabled.

—e This indicates the editing operation, which can be used with the —a and —A options similarly to the —i operation
to edit Apache’s httpd.conf configuration file without attempting to install the module.

Examples

Assume you have an Apache module named mod_foo . c available which should extend Apache’s server functionality.
To accomplish this you first have to compile the C source into a shared object suitable for loading into the Apache
server under runtime via the following command:

$ apxs -c mod_foo.c

/path/to/libtool —--mode=compile gcc ... -c mod_foo.c
/path/to/libtool --mode=link gcc ... -o mod-foo.la mod-foo.slo
S -

Then you have to update the Apache configuration by making sure a LOADMODULE directive is present to load this
shared object. To simplify this step apxs provides an automatic way to install the shared object in its "modules"
directory and updating the httpd. conf file accordingly. This can be achieved by running:

$ apxs -1 -a mod_foo.la

/path/to/instdso.sh mod_-foo.la /path/to/apache/modules

/path/to/libtool —--mode=install cp mod_foo.la /path/to/apache/modules
chmod 755 /path/to/apache/modules/mod_foo.so

[activating module ‘foo’ in /path/to/apache/conf/httpd.conf]

$ -

This way a line named

LoadModule foomodule modules/mod_foo.so

is added to the configuration file if still not present. If you want to have this disabled per default use the —2 option, i.e.

$ apxs -1 -A mod_foo.c

306 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

For a quick test of the apxs mechanism you can create a sample Apache module template plus a corresponding Makefile
via:

$ apxs -g -n foo

Creating [DIR] foo

Creating [FILE] foo/Makefile
Creating [FILE] foo/modules.mk
Creating [FILE] foo/mod_foo.c
Creating [FILE] foo/.deps

S -

Then you can immediately compile this sample module into a shared object and load it into the Apache server:

$ cd foo

S make all reload

apxs —c mod_foo.c

/path/to/libtool --mode=compile gcc ... -c mod-foo.c

/path/to/libtool --mode=link gcc ... -o mod_.foo.la mod._foo.slo

apxs -1 —a —-n "foo" mod_foo.la

/path/to/instdso.sh mod_-foo.la /path/to/apache/modules

/path/to/libtool —--mode=install cp mod_foo.la /path/to/apache/modules
chmod 755 /path/to/apache/modules/mod_foo.so

[activating module ‘foo’ in /path/to/apache/conf/httpd.conf]

apachectl restart

/path/to/apache/sbin/apachectl restart: httpd not running, trying to

start

[Tue Mar 31 11:27:55 1998] [debug] mod_so.c(303) : loaded module

foo_module

/path/to/apache/sbin/apachectl restart: httpd started

$ -

8.6. CONFIGURE - CONFIGURE THE SOURCE TREE 307
8.6 configure - Configure the source tree

The configure script configures the source tree for compiling and installing the Apache HTTP Server on your
particular platform. Various options allow the compilation of a server corresponding to your personal requirements.

This script, included in the root directory of the source distribution, is for compilation on Unix and Unix-like systems
only. For other platforms, see the platform (p. 266) documentation.

See also

e Compiling and Installing (p. 22)

Synopsis

You should call the configure script from within the root directory of the distribution.
./configure [OPTION]... [VAR=VALUE] ...

To assign environment variables (e.g. CC, CFLAGS ...), specify them as VAR=VALUE. See below for descriptions of
some of the useful variables.

Options

o Configuration options

e Installation directories

System types

Optional features

Options for support programs

Configuration options

The following options influence the behavior of configure itself.

-C

——config—-cache This is an alias for -——cache-file=config.cache
——cache—-file=FILE The test results will be cached in file FILE. This option is disabled by default.
-h

——help [short|recursive] Output the help and exit. With the argument short only options specific to this
package will displayed. The argument recursive displays the short help of all the included packages.

-n

—-no—-create The configure script is run normally but does not create output files. This is useful to check the
test results before generating makefiles for compilation.

-9
——quiet Do not print checking ... messages during the configure process.

—-srcdir=DIR Defines directory DIR to be the source file directory. Default is the directory where configure
is located, or the parent directory.

308 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

—-silent Same as ——quiet
Y

—version Display copyright information and exit.

Installation directories

These options define the installation directory. The installation tree depends on the selected layout.

——prefix=PREFIX Install architecture-independent files in PREFIX. By default the installation directory is set to
/usr/local/apache?2.

——exec-prefix=EPREFIX Install architecture-dependent files in EPREFIX. By default the installation directory

is set to the PREFIX directory.

By default, make install will install all the files in /usr/local/apache2/bin,
/usr/local/apache2/1ib etc. You can specify an installation prefix other than /usr/local/apache?
using ——prefix, for instance ——prefix=$HOME.

Define a directory layout

——enable-layout=LAYOUT Configure the source code and build scripts to assume an installation tree based on
the layout LAYOUT. This allows you to separately specify the locations for each type of file within the Apache
HTTP Server installation. The config. layout file contains several example configurations, and you can
also create your own custom configuration following the examples. The different layouts in this file are grouped
into <Layout FOO>...</Layout> sections and referred to by name as in FOO. The default layout is
Apache.

Fine tuning of the installation directories

For better control of the installation directories, use the options below. Please note that the directory defaults are set
by autoconf and are overwritten by the corresponding layout setting.

——bindir=DIR Install user executables in DIR. The user executables are supporting programs like htpasswd,
dbmmanage, etc. which are useful for site administrators. By default DIR is set to EPREFIX/bin.

——datadir=DIR Install read-only architecture-independent data in DIR. By default datadir is set to
PREFIX/share. This option is offered by autoconf and currently unused.

——includedir=DIR Install C header files in DIR. By default includedir is set to EPREFIX/include.

——infodir=DIR Install info documentation in DIR. By default infodir is set to PREFIX/info. This option
is currently unused.

—-1ibdir=DIR Install object code libraries in DIR. By default 1ibdir is setto EPREFIX/1lib.

—-libexecdir=DIR Install the program executables (i.e., shared modules) in DIR. By default 1ibexecdir is
set to EPREFIX/modules.

——localstatedir=DIR Install modifiable single-machine data in DIR. By default localstatedir is set to
PREFIX/var. This option is offered by aut oconf and currently unused.

—-mandir=DIR Install the man documentation in DIR. By default mandir is set to EPREFIX/man.

8.6. CONFIGURE - CONFIGURE THE SOURCE TREE 309

——oldincludedir=DIR Install C header files for non-gcc in DIR. By default oldincludedir is set to
/usr/include. This option is offered by aut oconf and currently unused.

—-sbindir=DIR Install the system administrator executables in DIR. Those are server programs like httpd,
apachectl, suexec, etc. which are necessary to run the Apache HTTP Server. By default sbindir is
setto EPREFIX/sbin.

—-sharedstatedir=DIR Install modifiable architecture-independent data in DIR. By default
sharedstatedir is set to PREFIX/com. This option is offered by autoconf and currently
unused.

——sysconfdir=DIR Install read-only single-machine data like the server configuration files httpd.conf,

mime.types, etc. in DIR. By default sysconfdir issetto PREFIX/conft.

System types

These options are used to cross-compile the Apache HTTP Server to run on another system. In normal cases, when
building and running the server on the same system, these options are not used.

—-build=BUILD Defines the system type of the system on which the tools are being built. It defaults to the result
of the script config.guess.

—-host=HOST Defines the system type of the system on which the server will run. HOST defaults to BUILD.

——target=TARGET Configure for building compilers for the system type TARGET. It defaults to HOST. This
option is offered by aut oconf and not necessary for the Apache HTTP Server.

Optional Features

These options are used to fine tune the features your HTTP server will have.

General syntax

Generally you can use the following syntax to enable or disable a feature:

——disable-FEATURE Do not include FEATURE. This is the same as ——enable—FEATURE=no.
——enable-FEATURE [=ARG] Include FEATURE. The default value for ARG is yes.

——enable-MODULE=shared The corresponding module will be build as DSO module. By default enabled mod-
ules are linked dynamically.

——enable-MODULE=static The corresponding module will be linked statically.

i Note

configure will not complain about ——enable—foo even if foo doesn’t exist, so you need
to type carefully.

310 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Choosing modules to compile

Most modules are compiled by default and have to be disabled explicitly or by using the keywords few or none (see
-—enable-modules, ——enable-mods-shared and ——enable-mods-static below for further explana-
tion) to be removed.

Other modules are not compiled by default and have to be enabled explicitly or by using the keywords all or
reallyall to be available.

To find out which modules are compiled by default, run . /configure -hor ./configure —--help and look
under Optional Features. Suppose you are interested in mod_examplel and mod_example?2, and you see
this:

Optional Features:

——disable-examplel example module 1
——enable—-example2 example module 2

Then mod_examplel is enabled by default, and you would use ——-disable-examplel to not compile it.
mod-example? is disabled by default, and you would use -~—enable-example?2 to compile it.

Multi-Processing Modules
Multi-Processing Modules (p. 90) , or MPMs, implement the basic behavior of the server. A single MPM must be
active in order for the server to function. The list of available MPMs appears on the module index page (p. 1101) .

MPMs can be built as DSOs for dynamic loading or statically linked with the server, and are enabled using the
following options:

——with-mpm=MPM Choose the default MPM for your server. If MPMs are built as DSO modules (see
—-—enable-mpms-shared), this directive selects the MPM which will be loaded in the default configura-
tion file. Otherwise, this directive selects the only available MPM, which will be statically linked into the server.

If this option is omitted, the default MPM (p. 90) for your operating system will be used.
——enable-mpms—shared=MPM-LIST Enable alist of MPMs as dynamic shared modules. One of these modules
must be loaded dynamically using the LOADMODULE directive.

MPM-LIST is a space-separated list of MPM names enclosed by quotation marks. For example:

——enable-mpms—-shared='prefork worker’

Additionally you can use the special keyword al1, which will select all MPMs which support dynamic loading
on the current platform and build them as DSO modules. For example:

——enable-mpms—-shared=all

8.6. CONFIGURE - CONFIGURE THE SOURCE TREE 311

Third-party modules
To add additional third-party modules use the following options:

——with-module=module-type:module-file[, module-type:module-file] Add one or more
third-party modules to the list of statically linked modules. The module source file module—file will be
searched in the modules/module-type subdirectory of your Apache HTTP server source tree. If it is not
found there configure is considering module-file to be an absolute file path and tries to copy the source
file into the module-type subdirectory. If the subdirectory doesn’t exist it will be created and populated with a
standard Makefile.in.

This option is useful to add small external modules consisting of one source file. For more complex modules
you should read the vendor’s documentation.

: Note

If you want to build a DSO module instead of a statically linked use apxs.

Cumulative and other options

——enable-maintainer-mode Turn on debugging and compile time warnings and load all compiled modules.
——enable-mods—-shared=MODULE-LIST Defines a list of modules to be enabled and build as dynamic shared
modules. This mean, these module have to be loaded dynamically by using the LOADMODULE directive.

MODULE-LIST is a space separated list of modulenames enclosed by quotation marks. The module names are
given without the preceding mod_. For example:

’7fenablefmodsfshared=’headers rewrite dav’ ‘

Additionally you can use the special keywords reallyall, all, most, few and none. For example,

’——enable—mods—shared:most ‘

will compile most modules and build them as DSO modules,

’——enable—mods—sharedzfew ‘

will only compile a very basic set of modules.
The default set is most.

The LOADMODULE directives for the chosen modules will be automatically generated in the main configuration
file. By default, all those directives will be commented out except for the modules that are either required or
explicitly selected by a configure ——enable-foo argument. You can change the set of loaded modules by
activating or deactivating the LOADMODULE directives in httpd.conf. In addition the LOADMODULE
directives for all built modules can be activated via the configure option ——enable-load-all-modules.

——enable-mods—static=MODULE-LIST This option behaves similar to ——enable-mods-shared, but
will link the given modules statically. This mean, these modules will always be present while running httpd.
They need not be loaded with LOADMODULE.

——enable-modules=MODULE-LIST This option behaves like to ——enable-mods-shared, and will also
link the given modules dynamically. The special keyword none disables the build of all modules.

——enable-v4-mapped Allow IPv6 sockets to handle IPv4 connections.

——with-port=PORT This defines the port on which httpd will listen. This port number is used when generating
the configuration file ht tpd. conf. The default is 80.

—-with-program—-name Define an alternative executable name. The default is ht tpd.

312 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Optional packages

These options are used to define optional packages.

General syntax

Generally you can use the following syntax to define an optional package:

——with-PACKAGE [=ARG] Use the package PACKAGE. The default value for ARG is yes.

——without-PACKAGE Do not use the package PACKAGE. This is the same as ——with-PACKAGE=no. This
option is provided by aut oconf but not very useful for the Apache HTTP Server.

Specific packages

——with—-apr=DIR|FILE The Apache Portable Runtime (APR) is part of the httpd source distribution and will
automatically be build together with the HTTP server. If you want to use an already installed APR instead you
have to tell configure the path to the apr—config script. You may set the absolute path and name or the
directory to the installed APR. apr—config must exist within this directory or the subdirectory bin.

——with-apr-util=DIR|FILE The Apache Portable Runtime Utilities (APU) are part of the httpd source distri-
bution and will automatically be build together with the HTTP server. If you want to use an already installed
APU instead you have to tell configure the path to the apu—config script. You may set the absolute
path and name or the directory to the installed APU. apu—-config must exist within this directory or the
subdirectory bin.

——with-ssl=DIR If MOD_SSL has been enabled configure searches for an installed OpenSSL. You can set the
directory path to the SSL/TLS toolkit instead.

—-with-z=DIR configure searches automatically for an installed z1ib library if your source configuration
requires one (e.g., when MOD_DEFLATE is enabled). You can set the directory path to the compression library
instead.

Several features of the Apache HTTP Server, including MOD_AUTHN_DBM and MOD_REWRITE’s DBM
REWRITEMAP use simple key/value databases for quick lookups of information. SDBM is included in the APU,
so this database is always available. If you would like to use other database types, use the following options to enable
them:

——with—-gdbm[=path] Ifno pathis specified, configure will search for the include files and libraries of a GNU
DBM installation in the usual search paths. An explicit path will cause configure tolook in path/1ib and
path/include for the relevant files. Finally, the path may specify specific include and library paths separated
by a colon.

—-with-ndbm[=path] Like ——-with—-gdbm, but searches for a New DBM installation.

—-with-berkeley-db[=path] Like —-with-gdbm, but searches for a Berkeley DB installation.

: Note

The DBM options are provided by the APU and passed through to its configuration script.
They are useless when using an already installed APU defined by ——with—-apr-util.

You may use more then one DBM implementation together with your HTTP server. The ap-
propriated DBM type will be configured within the runtime configuration at each time.

8.6. CONFIGURE - CONFIGURE THE SOURCE TREE 313

Options for support programs

——enable-static—support Build a statically linked version of the support binaries. This means, a stand-alone
executable will be built with all the necessary libraries integrated. Otherwise the support binaries are linked
dynamically by default.

——enable-suexec Use this option to enable suexec, which allows you to set uid and gid for spawned pro-
cesses. Do not use this option unless you understand all the security implications of running a suid binary
on your server. Further options to configure suexec are described below.

It is possible to create a statically linked binary of a single support program by using the following options:

——enable-static—ab Build a statically linked version of ab.
——enable-static—checkgid Build a statically linked version of checkgid.
——enable-static—htdbm Build a statically linked version of htdbm.
——enable-static-htdigest Build a statically linked version of htdigest.
——enable-static—htpasswd Build a statically linked version of htpasswd.
——enable-static-logresolve Build a statically linked version of logresolve.

——enable-static-rotatelogs Build a statically linked version of rotatelogs.

suexec configuration options

The following options are used to fine tune the behavior of suexec. See Configuring and installing SuEXEC (p.
335) for further information.

——-with-suexec-bin This defines the path to suexec binary. Default is ——sbindir (see Fine tuning of instal-
lation directories).

——with-suexec—caller This defines the user allowed to call suexec. It should be the same as the user under
which ht tpd normally runs.

—-with-suexec—docroot This defines the directory tree under which suexec access is allowed for executa-
bles. Default value is ~——datadir/htdocs.

—-with-suexec—gidmin Define this as the lowest GID allowed to be a target user for suexec. The default
value is 100.

——with-suexec—-logfile This defines the filename of the suexec logfile. By default the logfile is named
suexec_log and located in ——logfiledir.

——with-suexec—safepath Define the value of the environment variable PATH to be set for processes started
by suexec. Default value is /usr/local/bin:/usr/bin:/bin.

——with-suexec—userdir This defines the subdirectory under the user’s directory that contains all executables
for which suexec access is allowed. This setting is necessary when you want to use suexec together with
user-specific directories (as provided by MOD_USERDIR). The default is public_html.

——with-suexec—uidmin Define this as the lowest UID allowed to be a target user for suexec. The default
value is 100.

—-with-suexec—umask Set umask for processes started by suexec. It defaults to your system settings.

314 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Environment variables

There are some useful environment variables to override the choices made by configure or to help it to find libraries
and programs with nonstandard names or locations.

CC Define the C compiler command to be used for compilation.

CFLAGS Set C compiler flags you want to use for compilation.

CPP Define the C preprocessor command to be used.

CPPFLAGS Set C/C++ preprocessor flags, e.g. —Iincludedir if you have headers in a nonstandard directory
includedir.

LDFLAGS Set linker flags, e.g. ~L1ibdir if you have libraries in a nonstandard directory libdir.

8.7. DBMMANAGE - MANAGE USER AUTHENTICATION FILES IN DBM FORMAT 315
8.7 dbmmanage - Manage user authentication files in DBM format

dbmmanage is used to create and update the DBM format files used to store usernames and password for basic
authentication of HTTP users via MOD_AUTHN_DBM. Resources available from the Apache HTTP server can be
restricted to just the users listed in the files created by dbmmanage. This program can only be used when the
usernames are stored in a DBM file. To use a flat-file database see htpasswd.

Another tool to maintain a DBM password database is ht dbm.

This manual page only lists the command line arguments. For details of the directives necessary to configure
user authentication in httpd see the httpd manual, which is part of the Apache distribution or can be found at
http://httpd.apache.org/.

See also

httpd
htdbm

e MOD_AUTHN_DBM

e MOD_AUTHZ_DBM

Synopsis

dbmmanage [encoding] filename add|adduser|check|delete|update username [
encpasswd [groupl|, group...] [comment] 1]

dbmmanage filename view [username]

dbmmanage filename import

Options

filename The filename of the DBM format file. Usually without the extension .db, .pag, or .dir.
username The user for which the operations are performed. The username may not contain a colon (:).

encpasswd This is the already encrypted password to use for the update and add commands. You may use a
hyphen (-) if you want to get prompted for the password, but fill in the fields afterwards. Additionally when
using the update command, a period (.) keeps the original password untouched.

group A group, which the user is member of. A groupname may not contain a colon (:). You may use a hyphen
(=) if you don’t want to assign the user to a group, but fill in the comment field. Additionally when using the
update command, a period (.) keeps the original groups untouched.

comment This is the place for your opaque comments about the user, like realname, mailaddress or such things. The
server will ignore this field.

Encodings

—d crypt encryption (default, except on Win32, Netware)
—-m MDS5 encryption (default on Win32, Netware)
—s SHALI encryption

—p plaintext (not recommended)

316 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Commands

add Adds an entry for username to filename using the encrypted password encpasswd.

dbmmanage passwords.dat add rbowen foKntnEF3KSXA

adduser Asks for a password and then adds an entry for username to filename.

dbmmanage passwords.dat adduser krietz

check Asks for a password and then checks if username is in filename and if it’s password matches the specified
one.

dbmmanage passwords.dat check rbowen

delete Deletes the username entry from filename.

dbmmanage passwords.dat delete rbowen

import Reads username:password entries (one per line) from STDIN and adds them to filename. The pass-
words already have to be crypted.

update Same as the adduser command, except that it makes sure username already exists in filename.

dbmmanage passwords.dat update rbowen

view Just displays the contents of the DBM file. If you specify a username, it displays the particular record only.

’dbmmanage passwords.dat view

Bugs

One should be aware that there are a number of different DBM file formats in existence, and with all likelihood,
libraries for more than one format may exist on your system. The three primary examples are SDBM, NDBM, the
GNU project’s GDBM, and Berkeley DB 2. Unfortunately, all these libraries use different file formats, and you must
make sure that the file format used by filename is the same format that dommanage expects to see. dbmmanage
currently has no way of determining what type of DBM file it is looking at. If used against the wrong format, will
simply return nothing, or may create a different DBM file with a different name, or at worst, it may corrupt the DBM
file if you were attempting to write to it.

dbmmanage has a list of DBM format preferences, defined by the @AnyDBM: : ISA array near the beginning of the
program. Since we prefer the Berkeley DB 2 file format, the order in which dbmmanage will look for system libraries
is Berkeley DB 2, then NDBM, then GDBM and then SDBM. The first library found will be the library dommanage
will attempt to use for all DBM file transactions. This ordering is slightly different than the standard @AnyDBM: : ISA
ordering in Perl, as well as the ordering used by the simple dbmopen () call in Perl, so if you use any other utilities to
manage your DBM files, they must also follow this preference ordering. Similar care must be taken if using programs
in other languages, like C, to access these files.

One can usually use the £ile program supplied with most Unix systems to see what format a DBM file is in.

8.8. FCGISTARTER - START A FASTCGI PROGRAM 317
8.8 fcgistarter - Start a FastCGI program

See also

e MOD_PROXY_FCGI

Note

Currently only works on Unix systems.

Synopsis

fcgistarter -c¢ command -p port [-i interface] -N num

Options

—c command FastCGI program

—p port Port which the program will listen on

—-i interface Interface which the program will listen on

-N num Number of instances of the program

318 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS
8.9 firehose - Demultiplex a firehose stream

firehose demultiplexes the given stream of multiplexed connections, and writes each connection to an individual
file.

When writing to files, each connection is placed into a dedicated file named after the UUID of the connection within
the stream. Separate files will be created if requests and responses are found in the stream.

If an optional prefix is specified as a parameter, connections that start with the given prefix will be included. The prefix
needs to fit completely within the first fragment for a successful match to occur.

See also

e MOD_FIREHOSE

Synopsis

firehose [—f input] [-o output-directory] [-u uuid] [-h] [—--version]
[prefixl [...]]

Options
—--file, -f filename File to read the firchose from. Defaults to stdin.

—-output-directory, -o output-directory Directory to write demultiplexed connections to.

——uuid, -uuwuid The UUID of the connection to demultiplex. Can be specified more than once. If not specified,
all UUIDs will be demultiplexed.

—-help, -h This help text.

—-version Display the version of the program.

8.10. HTCACHECLEAN - CLEAN UP THE DISK CACHE 319
8.10 htcacheclean - Clean up the disk cache

htcacheclean is used to keep the size of MOD_CACHE_DISK’s storage within a given size limit, or limit on inodes
in use. This tool can run either manually or in daemon mode. When running in daemon mode, it sleeps in the
background and checks the cache directory at regular intervals for cached content to be removed. You can stop the
daemon cleanly by sending it a TERM or INT signal. When run manually, a once off check of the cache directory is
made for cached content to be removed. If one or more URLSs are specified, each URL will be deleted from the cache,
if present.

See also

e MOD_CACHE_DISK

Synopsis
htcacheclean [D] [v] [-t] [-r 1] [-n] [-Rround] -ppath [-1llimit]|
-Llimit]

htcacheclean [n] [-t] [-1] [-Ppidfile] [-Rround] -dinterval -ppath
[-11imit| -Llimit]

htcacheclean [-v] [-Rround] -ppath [-a] [-A]
htcacheclean [-D] [-v] [-t] [-Rround] -ppath url

Options

—dinterval Daemonize and repeat cache cleaning every interval minutes. This option is mutually exclusive with
the —D, —v and —r options. To shutdown the daemon cleanly, just send it a SIGTERM or STGINT.

-D Do a dry run and don’t delete anything. This option is mutually exclusive with the —d option. When doing a
dry run and deleting directories with —t, the inodes reported deleted in the stats cannot take into account the
directories deleted, and will be marked as an estimate.

—v Be verbose and print statistics. This option is mutually exclusive with the —d option.

—r Clean thoroughly. This assumes that the Apache web server is not running (otherwise you may get garbage in the
cache). This option is mutually exclusive with the —d option and implies the —t option.

—n Be nice. This causes slower processing in favour of other processes. htcacheclean will sleep from time to
time so that (a) the disk IO will be delayed and (b) the kernel can schedule other processes in the meantime.

—t Delete all empty directories. By default only cache files are removed, however with some configurations the
large number of directories created may require attention. If your configuration requires a very large number of
directories, to the point that inode or file allocation table exhaustion may become an issue, use of this option is
advised.

—ppath Specify path as the root directory of the disk cache. This should be the same value as specified with the
CACHEROOT directive.

-Ppidfile Specify pidfile as the name of the file to write the process ID to when daemonized.

—Rround Specify round as the amount to round sizes up to, to compensate for disk block sizes. Set to the block size
of the cache partition.

-11imit Specify limit as the total disk cache size limit. The value is expressed in bytes by default (or attaching B
to the number). Attach K for Kbytes or M for MBytes.

320 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

-Llimit Specify limit as the total disk cache inode limit.

—i Be intelligent and run only when there was a modification of the disk cache. This option is only possible together
with the —d option.

—a List the URLs currently stored in the cache. Variants of the same URL will be listed once for each variant.

—A List the URLSs currently stored in the cache, along with their attributes in the following order: url, header size,
body size, status, entity version, date, expiry, request time, response time, body present, head request.

Deleting a specific URL

If htcacheclean is passed one or more URLs, each URL will be deleted from the cache. If multiple variants of an
URL exists, all variants would be deleted.

When a reverse proxied URL is to be deleted, the effective URL is constructed from the Host header, the port, the path
and the query. Note the ’?” in the URL must always be specified explicitly, whether a query string is present or not. For
example, an attempt to delete the path / from the server localhost, the URL to delete would be http://localhost:80/?.

Listing URLSs in the Cache

By passing the —a or —A options to ht cacheclean, the URLs within the cache will be listed as they are found, one
URL per line. The —A option dumps the full cache entry after the URL, with fields in the following order:
url The URL of the entry.

header size The size of the header in bytes.

body size The size of the body in bytes.

status Status of the cached response.

entity version The number of times this entry has been revalidated without being deleted.

date Date of the response.

expiry Expiry date of the response.

request time Time of the start of the request.

response time Time of the end of the request.

body present If 0, no body is stored with this request, 1 otherwise.

head request If 1, the entry contains a cached HEAD request with no body, 0 otherwise.

Exit Status

htcacheclean returns a zero status ("true") if all operations were successful, 1 otherwise. If an URL is specified,
and the URL was cached and successfully removed, 0 is returned, 2 otherwise. If an error occurred during URL
removal, 1 is returned.

8.11. HTDBM - MANIPULATE DBM PASSWORD DATABASES 321

8.11 htdbm - Manipulate DBM password databases

htdbm is used to manipulate the DBM format files used to store usernames and password for basic authentication
of HTTP users via MOD_AUTHN_DBM. See the dbmmanage documentation for more information about these DBM
files.

See also

e httpd
e dbmmanage

e MOD_AUTHN_DBM

Synopsis

htdom [-TDBTYPE] [-1] [e] [m | -B | -d| -s | -p] [-Ccost] [-t]
[-v] filename username

htdom -b [-TDBTYPE] [¢] [m | -B | -d| -s | -p1]1 [Ccost] [-t 1 I[
-v] filename username password

htdom -n [-1] [~-e] [m| B | -d|] -s | -p] [Ccost] [-t 1] [-v]
username

htdom -nb [¢] [m | -B | -d]| -s | -p] [Ccost] [-t] [-v] username
password

htdom -v [-TDBTYPE 1 [-1] [e] [m | B | -d| -s | -p 1 [-C cost 1 [
-t] [-v] filename username

htdom -vb [-TDBTYPE] [¢] [m | -B | -d | -s | -p] [Ccost] [-t 1 [
-v] filename username password

htdbm -x [-TDBTYPE]| filename username

htdbm -1 [-TDBTYPE]

Options

-b Use batch mode; i.e., get the password from the command line rather than prompting for it. This option should be
used with extreme care, since the password is clearly visible on the command line. For script use see the —1
option.

—i Read the password from stdin without verification (for script usage).

—c Create the passwdfile. If passwdfile already exists, it is rewritten and truncated. This option cannot be combined
with the —n option.

—n Display the results on standard output rather than updating a database. This option changes the syntax of the
command line, since the passwdfile argument (usually the first one) is omitted. It cannot be combined with the
—c option.

—-m Use MDS5 encryption for passwords. On Windows and Netware, this is the default.
—-B Use berypt encryption for passwords. This is currently considered to be very secure.

—C This flag is only allowed in combination with —B (bcrypt encryption). It sets the computing time used for the
berypt algorithm (higher is more secure but slower, default: 5, valid: 4 to 31).

322 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

—d Use crypt () encryption for passwords. The default on all platforms but Windows and Netware. Though
possibly supported by htdbm on all platforms, it is not supported by the httpd server on Windows and
Netware. This algorithm is insecure by today’s standards.

—s Use SHA encryption for passwords. Facilitates migration from/to Netscape servers using the LDAP Directory
Interchange Format (1dif). This algorithm is insecure by today’s standards.

—p Use plaintext passwords. Though htdbm will support creation on all platforms, the ht tpd daemon will only
accept plain text passwords on Windows and Netware.

—1 Print each of the usernames and comments from the database on stdout.

—v Verify the username and password. The program will print a message indicating whether the supplied password
is valid. If the password is invalid, the program exits with error code 3.

—x Delete user. If the username exists in the specified DBM file, it will be deleted.

|
o

Interpret the final parameter as a comment. When this option is specified, an additional string can be appended
to the command line; this string will be stored in the "Comment" field of the database, associated with the
specified username.

filename The filename of the DBM format file. Usually without the extension .db, .pag, or .dir. If —c is
given, the DBM file is created if it does not already exist, or updated if it does exist.

username The username to create or update in passwdfile. If username does not exist in this file, an entry is added.
If it does exist, the password is changed.

password The plaintext password to be encrypted and stored in the DBM file. Used only with the —b flag.

-TDBTYPE Type of DBM file (SDBM, GDBM, DB, or "default").

Bugs

One should be aware that there are a number of different DBM file formats in existence, and with all likelihood,
libraries for more than one format may exist on your system. The three primary examples are SDBM, NDBM, GNU
GDBM, and Berkeley/Sleepycat DB 2/3/4. Unfortunately, all these libraries use different file formats, and you must
make sure that the file format used by filename is the same format that ht dbm expects to see. ht dbm currently has
no way of determining what type of DBM file it is looking at. If used against the wrong format, will simply return
nothing, or may create a different DBM file with a different name, or at worst, it may corrupt the DBM file if you were
attempting to write to it.

One can usually use the £11e program supplied with most Unix systems to see what format a DBM file is in.

Exit Status

htdbm returns a zero status ("true") if the username and password have been successfully added or updated in the
DBM File. htdbm returns 1 if it encounters some problem accessing files, 2 if there was a syntax problem with the
command line, 3 if the password was entered interactively and the verification entry didn’t match, 4 if its operation
was interrupted, 5 if a value is too long (username, filename, password, or final computed record), 6 if the username
contains illegal characters (see the Restrictions section), and 7 if the file is not a valid DBM password file.

8.11. HTDBM - MANIPULATE DBM PASSWORD DATABASES 323

Examples

’htdbm /usr/local/etc/apache/.htdbm-users jsmith

Adds or modifies the password for user jsmith. The user is prompted for the password. If executed on a Windows
system, the password will be encrypted using the modified Apache MDS5 algorithm; otherwise, the system’s crypt ()
routine will be used. If the file does not exist, ht dbom will do nothing except return an error.

htdbm —-c /home/doe/public_html/.htdbm jane

Creates a new file and stores a record in it for user jane. The user is prompted for the password. If the file exists and
cannot be read, or cannot be written, it is not altered and ht dbm will display a message and return an error status.

htdbm -mb /usr/web/.htdbm-all jones Pwd4Steve

Encrypts the password from the command line (Pwd4 Steve) using the MDS5 algorithm, and stores it in the specified
file.

Security Considerations
Web password files such as those managed by ht dlom should not be within the Web server’s URI space — that is, they
should not be fetchable with a browser.

The use of the —b option is discouraged, since when it is used the unencrypted password appears on the command
line.

When using the crypt () algorithm, note that only the first 8 characters of the password are used to form the pass-
word. If the supplied password is longer, the extra characters will be silently discarded.

The SHA encryption format does not use salting: for a given password, there is only one encrypted representation.
The crypt () and MDS5 formats permute the representation by prepending a random salt string, to make dictionary
attacks against the passwords more difficult.

The SHA and crypt () formats are insecure by today’s standards.

Restrictions
On the Windows platform, passwords encrypted with ht dbm are limited to no more than 255 characters in length.
Longer passwords will be truncated to 255 characters.

The MDS5 algorithm used by ht dbm is specific to the Apache software; passwords encrypted using it will not be usable
with other Web servers.

Usernames are limited to 255 bytes and may not include the character :.

324 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS
8.12 htdigest - manage user files for digest authentication

htdigest is used to create and update the flat-files used to store usernames, realm and password for digest authen-
tication of HTTP users. Resources available from the Apache HTTP server can be restricted to just the users listed in
the files created by htdigest.

This manual page only lists the command line arguments. For details of the directives necessary to configure di-
gest authentication in httpd see the Apache manual, which is part of the Apache distribution or can be found at
http://httpd.apache.org/.

See also

e httpd
e MOD_AUTH_DIGEST

Synopsis

htdigest [-¢] passwdfile realm username

Options

—c Create the passwdfile. If passwdfile already exists, it is deleted first.

passwdfile Name of the file to contain the username, realm and password. If —c is given, this file is created if it
does not already exist, or deleted and recreated if it does exist.

realm The realm name to which the user name belongs. See

http://tools.ietf.org/html/rfc2617#section-3.2.1' for more details.

username The user name to create or update in passwdfile. If username does not exist is this file, an entry is added.
If it does exist, the password is changed.

Security Considerations

This program is not safe as a setuid executable. Do not make it setuid.

Uhttp://tools.ietf.org/html/rfc26 1 7#section-3.2.1

http://tools.ietf.org/html/rfc2617#section-3.2.1

8.13. HTPASSWD - MANAGE USER FILES FOR BASIC AUTHENTICATION 325
8.13 htpasswd - Manage user files for basic authentication

htpasswd is used to create and update the flat-files used to store usernames and password for basic authentication of
HTTP users. If ht passwd cannot access a file, such as not being able to write to the output file or not being able to
read the file in order to update it, it returns an error status and makes no changes.

Resources available from the Apache HTTP server can be restricted to just the users listed in the files created by
htpasswd. This program can only manage usernames and passwords stored in a flat-file. It can encrypt and display
password information for use in other types of data stores, though. To use a DBM database see dommanage or
htdbm.

htpasswd encrypts passwords using either berypt, a version of MDS modified for Apache, SHAT1, or the system’s
crypt () routine. Files managed by ht passwd may contain a mixture of different encoding types of passwords;
some user records may have bcrypt or MD5-encrypted passwords while others in the same file may have passwords
encrypted with crypt ().

This manual page only lists the command line arguments. For details of the directives necessary to configure
user authentication in httpd see the Apache manual, which is part of the Apache distribution or can be found at
http://httpd.apache.org/>.

See also

e httpd
e htdbm
e The scripts in support/SHA1 which come with the distribution.

Synopsis
htpasswd [¢] [-1] [m | B| -d]|] -s | -pl] [Ccost] [-D] [-v]
passwdfile username

htpasswd -b [¢] [m | B | d| -s | -p] [Ccost] [-D] [-v]
passwdfile username password

htpasswd n [-1] [m | B | -d| -s | -p 1] [-C cost] username
htpasswd -nb [-m | -B | -d | -s | -p] [-C cost] username password
Options

—b Use batch mode; i.e., get the password from the command line rather than prompting for it. This option should be
used with extreme care, since the password is clearly visible on the command line. For script use see the —i
option.

Available in 2.4.4 and later.

—i Read the password from stdin without verification (for script usage).

—c Create the passwdfile. If passwdfile already exists, it is rewritten and truncated. This option cannot be combined
with the —n option.

—n Display the results on standard output rather than updating a file. This is useful for generating password records
acceptable to Apache for inclusion in non-text data stores. This option changes the syntax of the command line,
since the passwdfile argument (usually the first one) is omitted. It cannot be combined with the —c option.

—-m Use MDS5 encryption for passwords. This is the default (since version 2.2.18).

2http://httpd.apache.org

http://httpd.apache.org

326 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

—B Use berypt encryption for passwords. This is currently considered to be very secure.

—C This flag is only allowed in combination with —B (bcrypt encryption). It sets the computing time used for the
berypt algorithm (higher is more secure but slower, default: 5, valid: 4 to 31).

—d Use crypt () encryption for passwords. This is not supported by the httpd server on Windows and Netware.
This algorithm limits the password length to 8 characters. This algorithm is insecure by today’s standards. It
used to be the default algorithm until version 2.2.17.

—s Use SHA encryption for passwords. Facilitates migration from/to Netscape servers using the LDAP Directory
Interchange Format (1dif). This algorithm is insecure by today’s standards.

—p Use plaintext passwords. Though htpasswd will support creation on all platforms, the ht t pd daemon will only
accept plain text passwords on Windows and Netware.

—D Delete user. If the username exists in the specified htpasswd file, it will be deleted.

—v Verify password. Verify that the given password matches the password of the user stored in the specified htpasswd
file.
Available in 2.4.5 and later.

passwdfile Name of the file to contain the user name and password. If —c is given, this file is created if it does
not already exist, or rewritten and truncated if it does exist.

username The username to create or update in passwdfile. If username does not exist in this file, an entry is added.
If it does exist, the password is changed.

password The plaintext password to be encrypted and stored in the file. Only used with the —b flag.

Exit Status

htpasswd returns a zero status ("true") if the username and password have been successfully added or updated in
the passwdfile. htpasswd returns 1 if it encounters some problem accessing files, 2 if there was a syntax problem
with the command line, 3 if the password was entered interactively and the verification entry didn’t match, 4 if its
operation was interrupted, 5 if a value is too long (username, filename, password, or final computed record), 6 if the
username contains illegal characters (see the Restrictions section), and 7 if the file is not a valid password file.

Examples

’htpasswd /usr/local/etc/apache/.htpasswd-users jsmith

Adds or modifies the password for user jsmith. The user is prompted for the password. The password will be
encrypted using the modified Apache MDS5 algorithm. If the file does not exist, ht passwd will do nothing except
return an error.

htpasswd -c /home/doe/public_html/.htpasswd Jjane

Creates a new file and stores a record in it for user jane. The user is prompted for the password. If the file exists and
cannot be read, or cannot be written, it is not altered and ht passwd will display a message and return an error status.

htpasswd —-db /usr/web/.htpasswd-all Jjones Pwd4Steve

Encrypts the password from the command line (Pwd4Steve) using the crypt () algorithm, and stores it in the
specified file.

8.13. HTPASSWD - MANAGE USER FILES FOR BASIC AUTHENTICATION 327

Security Considerations

Web password files such as those managed by htpasswd should not be within the Web server’s URI space — that is,
they should not be fetchable with a browser.

This program is not safe as a setuid executable. Do not make it setuid.

The use of the —b option is discouraged, since when it is used the unencrypted password appears on the command
line.

When using the crypt () algorithm, note that only the first 8 characters of the password are used to form the pass-
word. If the supplied password is longer, the extra characters will be silently discarded.

The SHA encryption format does not use salting: for a given password, there is only one encrypted representation.
The crypt () and MDS5 formats permute the representation by prepending a random salt string, to make dictionary
attacks against the passwords more difficult.

The SHA and crypt () formats are insecure by today’s standards.

Restrictions

On the Windows platform, passwords encrypted with ht passwd are limited to no more than 255 characters in length.
Longer passwords will be truncated to 255 characters.

The MDS5 algorithm used by htpasswd is specific to the Apache software; passwords encrypted using it will not be
usable with other Web servers.

Usernames are limited to 255 bytes and may not include the character :.

328 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.14 httxt2dbm - Generate dbm files for use with RewriteMap

httxt2dbm is used to generate dbm files from text input, for use in REWRITEMAP with the dbm map type.
If the output file already exists, it will not be truncated. New keys will be added and existing keys will be updated.

See also

e httpd

e MOD_REWRITE

Synopsis

httxt2dbm [-v] [-f DBM.TYPE] -i SOURCE_.TXT -o OUTPUT_-DBM

Options

—v More verbose output

—f DBM.TYPE Specify the DBM type to be used for the output. If not specified, will use the APR Default. Available
types are: GDBM for GDBM files, SDBM for SDBM files, DB for berkeley DB files, NDBM for NDBM files,
default for the default DBM type.

—i SOURCE_TXT Input file from which the dbm is to be created. The file should be formated with one record per
line, of the form: key value. See the documentation for REWRITEMAP for further details of this file’s format
and meaning.

—o OUTPUT_DBM Name of the output dbm files.

Examples

httxt2dbm -i rewritemap.txt -o rewritemap.dbm

httxt2dbm —-f SDBM -i rewritemap.txt -o rewritemap.dbm

8.15. LOGRESOLVE - RESOLVE IP-ADDRESSES TO HOSTNAMES IN APACHE LOG FILES 329
8.15 logresolve - Resolve IP-addresses to hostnames in Apache log files

logresolve is a post-processing program to resolve [P-addresses in Apache’s access logfiles. To minimize impact
on your nameserver, logresolve has its very own internal hash-table cache. This means that each IP number will only
be looked up the first time it is found in the log file.

Takes an Apache log file on standard input. The IP addresses must be the first thing on each line and must be separated
from the remainder of the line by a space.

Synopsis

logresolve [-s filename] [-¢] < access_log > access_log.new

Options

—-s filename Specifies a filename to record statistics.

—c This causes logresolve to apply some DNS checks: after finding the hostname from the IP address, it looks
up the IP addresses for the hostname and checks that one of these matches the original address.

330 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS
8.16 log server status - Log periodic status summaries

This perl script is designed to be run at a frequent interval by something like cron. It connects to the server and
downloads the status information. It reformats the information to a single line and logs it to a file. Adjust the variables
at the top of the script to specify the location of the resulting logfile. MOD_STATUS will need to be loaded and
configured in order for this script to do its job.

Usage

The script contains the following section.

my Swherelog = "/usr/local/apache2/logs/"; # Logs will be like "/usr/local/apache2/logs/1
my Sserver = "localhost"; # Name of server, could be "www.foo.com"

my Sport = "go"; # Port on server

my Srequest = "/server-status/?auto"; # Request to send

You’ll need to ensure that these variables have the correct values, and you’ll need to have the /server—status
handler configured at the location specified, and the specified log location needs to be writable by the user which will
run the script.

Run the script periodically via cron to produce a daily log file, which can then be used for statistical analysis.

8.17. ROTATELOGS - PIPED LOGGING PROGRAM TO ROTATE APACHE LOGS 331
8.17 rotatelogs - Piped logging program to rotate Apache logs

rotatelogs is a simple program for use in conjunction with Apache’s piped logfile feature. It supports rotation
based on a time interval or maximum size of the log.

Synopsis

rotatelogs [-1] [-L linkname] [-p program] [-£ 1 [-D 1 [-t 1 [-v]
[e] [e] [—n number-of-files] logfile rotationtime|filesize(B|KIM|G) [
offset]

Options

—1 Causes the use of local time rather than GMT as the base for the interval or for st rftime (3) formatting with
size-based rotation.

—L linkname Causes a hard link to be made from the current logfile to the specified link name. This can be used to
watch the log continuously across rotations using a command like tail -F linkname.

—p program 1If given, rotatelogs will execute the specified program every time a new log file is opened. The
filename of the newly opened file is passed as the first argument to the program. If executing after a rotation,
the old log file is passed as the second argument. rotatelogs does not wait for the specified program to
terminate before continuing to operate, and will not log any error code returned on termination. The spawned
program uses the same stdin, stdout, and stderr as rotatelogs itself, and also inherits the environment.

—£ Causes the logfile to be opened immediately, as soon as rotatelogs starts, instead of waiting for the first
logfile entry to be read (for non-busy sites, there may be a substantial delay between when the server is started
and when the first request is handled, meaning that the associated logfile does not "exist" until then, which
causes problems from some automated logging tools)

—-D Creates the parent directories of the path that the log file will be placed in if they do not already exist. This allows
strftime (3) formatting to be used in the path and not just the filename.

—t Causes the logfile to be truncated instead of rotated. This is useful when a log is processed in real time by a
command like tail, and there is no need for archived data. No suffix will be added to the filename, however
format strings containing *%’ characters will be respected.

—v Produce verbose output on STDERR. The output contains the result of the configuration parsing, and all file open
and close actions.

1]

Echo logs through to stdout. Useful when logs need to be further processed in real time by a further tool in the
chain.

—c Create log file for each interval, even if empty.

-n number-of-files Use a circular list of filenames without timestamps. With -n 3, the series of log files
opened would be "logfile", "logfile.1", "logfile.2", then overwriting "logfile".
Available in 2.4.5 and later.

logfile The path plus basename of the logfile. If logfile includes any %’ characters, it is treated as a format
string for st rftime (3) . Otherwise, the suffix .nnnnnnnnnn is automatically added and is the time in seconds
(unless the -t option is used). Both formats compute the start time from the beginning of the current period.
For example, if a rotation time of 86400 is specified, the hour, minute, and second fields created from the
strftime (3) format will all be zero, referring to the beginning of the current 24-hour period (midnight).

332 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

When using strftime (3) filename formatting, be sure the log file format has enough granularity to produce
a different file name each time the logs are rotated. Otherwise rotation will overwrite the same file instead of
starting a new one. For example, if logfile was /var/log/errorlog.%$Y-%m-%d with log rotation at 5
megabytes, but 5 megabytes was reached twice in the same day, the same log file name would be produced and
log rotation would keep writing to the same file.

rotationtime The time between log file rotations in seconds. The rotation occurs at the beginning of this interval.
For example, if the rotation time is 3600, the log file will be rotated at the beginning of every hour; if the rotation
time is 86400, the log file will be rotated every night at midnight. (If no data is logged during an interval, no file
will be created.)

filesize (B|K|M|G) The maximum file size in followed by exactly one of the letters B (Bytes), K (KBytes), M
(MBytes) or G (GBytes).
When time and size are specified, the size must be given after the time. Rotation will occur whenever either
time or size limits are reached.

offset The number of minutes offset from UTC. If omitted, zero is assumed and UTC is used. For example, to use
local time in the zone UTC -5 hours, specify a value of —300 for this argument. In most cases, —1 should be
used instead of specifying an offset.

Examples

CustomLog "|bin/rotatelogs /var/log/logfile 86400" common

This creates the files /var/log/logfile.nnnn where nnnn is the system time at which the log nominally starts (this time
will always be a multiple of the rotation time, so you can synchronize cron scripts with it). At the end of each rotation
time (here after 24 hours) a new log is started.

CustomLog "|bin/rotatelogs -1 /var/log/logfile.%Y.%m.%d 86400" common

This creates the files /var/log/logfile.yyyy.mm.dd where yyyy is the year, mm is the month, and dd is the day of the
month. Logging will switch to a new file every day at midnight, local time.

’CustomLog "|bin/rotatelogs /var/log/logfile 5M" common ‘

This configuration will rotate the logfile whenever it reaches a size of 5 megabytes.

’ErrorLog "|bin/rotatelogs /var/log/errorlog.%Y-%m-%d-%$H_$M_%S 5M"

This configuration will rotate the error logfile whenever it reaches a size of 5 megabytes, and the suffix to the logfile
name will be created of the form errorlog.YYYY-mm-dd-HH_MM_SS.

CustomLog "|bin/rotatelogs -t /var/log/logfile 86400" common

This creates the file /var/log/logfile, truncating the file at startup and then truncating the file once per day. It is expected
in this scenario that a separate process (such as tail) would process the file in real time.

Portability

The following logfile format string substitutions should be supported by all strftime (3) implementations, see the
strftime (3) man page for library-specific extensions.

8.17. ROTATELOGS - PIPED LOGGING PROGRAM TO ROTATE APACHE LOGS 333

SA full weekday name (localized)

%a 3-character weekday name (localized)

B full month name (localized)

%b 3-character month name (localized)

Ele date and time (localized)

$d 2-digit day of month

SH 2-digit hour (24 hour clock)

$I 2-digit hour (12 hour clock)

%] 3-digit day of year

$M 2-digit minute

Sm 2-digit month

$p am/pm of 12 hour clock (localized)

%S 2-digit second

$U 2-digit week of year (Sunday first day of week)
SW 2-digit week of year (Monday first day of week)
Sw 1-digit weekday (Sunday first day of week)
%X time (localized)

$x date (localized)

Y 4-digit year

Sy 2-digit year

%7 time zone name

% literal ‘%’

334 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS
8.18 split-logfile - Split up multi-vhost logfiles

This perl script will take a combined Web server access log file and break its contents into separate files. It assumes
that the first field of each line is the virtual host identity, put there using the "%v" variable in LOGFORMAT.

Usage

Create a log file with virtual host information in it:

LogFormat "$v %$h %1 %u %t \"%r\" %>s %b \"${Referer}i\" \"%{User-agent}i\"" combined_plus_:
CustomLog "logs/access_log" combined_plus_vhost

Log files will be created, in the directory where you run the script, for each virtual host name that appears in the
combined log file. These logfiles will named after the hostname, with a . 1og file extension.

The combined log file is read from stdin. Records read will be appended to any existing log files.

split-logfile < access_log

8.19. SUEXEC - SWITCH USER BEFORE EXECUTING EXTERNAL PROGRAMS 335
8.19 suexec - Switch user before executing external programs

suexec is used by the Apache HTTP Server to switch to another user before executing CGI programs. In order to
achieve this, it must run as root. Since the HTTP daemon normally doesn’t run as root, the suexec executable
needs the setuid bit set and must be owned by root. It should never be writable for any other person than root.

For further information about the concepts and the security model of suexec please refer to the suexec documentation
(http://httpd.apache.org/docs/trunk/suexec.html).

Synopsis

suexec -V

Options

-V If you are root, this option displays the compile options of suexec. For security reasons all configuration
options are changeable only at compile time.

336 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.20 Other Programs

This page used to contain documentation for programs which now have their own docs pages. Please update any links.
log._server_status

split-logfile

Chapter 9

Apache Miscellaneous Documentation

337

338 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION
9.1 Apache Miscellaneous Documentation

Below is a list of additional documentation pages that apply to the Apache web server development project.

m Warning

The documents below have not been fully updated to take into account changes made in the
2.1 version of the Apache HTTP Server. Some of the information may still be relevant, but
please use it with care.

Performance Notes - Apache Tuning (p. 339) Notes about how to (run-time and compile-time) configure Apache
for highest performance. Notes explaining why Apache does some things, and why it doesn’t do other things
(which make it slower/faster).

Performance Scaling (p. 350) Some easily accessible configuration and tuning options for Apache httpd 2.2 and 2.4
as well as monitoring tools.

Security Tips (p. 364) Some "do"s - and "don’t"s - for keeping your Apache web site secure.

Relevant Standards (p. 369) This document acts as a reference page for most of the relevant standards that Apache
follows.

Password Encryption Formats (p. 371) Discussion of the various ciphers supported by Apache for authentication
purposes.

9.2. APACHE PERFORMANCE TUNING 339

9.2 Apache Performance Tuning

Apache 2.x is a general-purpose webserver, designed to provide a balance of flexibility, portability, and performance.
Although it has not been designed specifically to set benchmark records, Apache 2.x is capable of high performance
in many real-world situations.

Compared to Apache 1.3, release 2.x contains many additional optimizations to increase throughput and scalability.
Most of these improvements are enabled by default. However, there are compile-time and run-time configuration
choices that can significantly affect performance. This document describes the options that a server administrator
can configure to tune the performance of an Apache 2.x installation. Some of these configuration options enable the
httpd to better take advantage of the capabilities of the hardware and OS, while others allow the administrator to trade
functionality for speed.

Hardware and Operating System Issues

The single biggest hardware issue affecting webserver performance is RAM. A webserver should never ever have to
swap, as swapping increases the latency of each request beyond a point that users consider "fast enough". This causes
users to hit stop and reload, further increasing the load. You can, and should, control the MAXREQUESTWORKERS
setting so that your server does not spawn so many children that it starts swapping. The procedure for doing this is
simple: determine the size of your average Apache process, by looking at your process list via a tool such as t op, and
divide this into your total available memory, leaving some room for other processes.

Beyond that the rest is mundane: get a fast enough CPU, a fast enough network card, and fast enough disks, where
"fast enough" is something that needs to be determined by experimentation.

Operating system choice is largely a matter of local concerns. But some guidelines that have proven generally useful
are:

e Run the latest stable release and patch level of the operating system that you choose. Many OS suppliers have
introduced significant performance improvements to their TCP stacks and thread libraries in recent years.

e If your OS supports a sendfile (2) system call, make sure you install the release and/or patches needed to
enable it. (With Linux, for example, this means using Linux 2.4 or later. For early releases of Solaris 8, you may
need to apply a patch.) On systems where it is available, sendfile enables Apache 2 to deliver static content
faster and with lower CPU utilization.

Run-Time Configuration Issues

Related Modules Related Directives
MOD_DIR ALLOWOVERRIDE
MPM_COMMON DIRECTORYINDEX
MOD_STATUS HOSTNAMELOOKUPS
ENABLEMMAP
ENABLESENDFILE
KEEPALIVETIMEOUT
MAXSPARESERVERS
MINSPARESERVERS
OPTIONS
STARTSERVERS

340 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

HostnameLookups and other DNS considerations

Prior to Apache 1.3, HOSTNAMELOOKUPS defaulted to On. This adds latency to every request because it requires a
DNS lookup to complete before the request is finished. In Apache 1.3 this setting defaults to Of £. If you need to have
addresses in your log files resolved to hostnames, use the 1logresolve program that comes with Apache, or one of
the numerous log reporting packages which are available.

It is recommended that you do this sort of postprocessing of your log files on some machine other than the production
web server machine, in order that this activity not adversely affect server performance.

If you use any Arzow from domain or DENy from domain directives (i.e., using a hostname, or a domain
name, rather than an IP address) then you will pay for two DNS lookups (a reverse, followed by a forward lookup to
make sure that the reverse is not being spoofed). For best performance, therefore, use IP addresses, rather than names,
when using these directives, if possible.

Note that it’s possible to scope the directives, such as within a <Location "/server—-status"> section. In
this case the DNS lookups are only performed on requests matching the criteria. Here’s an example which disables
lookups except for . html and . cgi files:

HostnameLookups off

<Files ~ "\.(html|cgi)s$">
HostnameLookups on
</Files>

But even still, if you just need DNS names in some CGIs you could consider doing the gethostbyname call in the
specific CGIs that need it.

FollowSymLinks and SymLinksIfOwnerMatch

Wherever in your URL-space you do not have an Options FollowSymLinks, or you do have an Options
SymLinksIfOwnerMatch, Apache will need to issue extra system calls to check up on symlinks. (One extra call
per filename component.) For example, if you had:

DocumentRoot "/www/htdocs"
<Directory "/">

Options SymLinksIfOwnerMatch
</Directory>

and a request is made for the URI /index .html, then Apache will perform 1stat (2) on /www, /www/htdocs,
and /www/htdocs/index.html. The results of these 1stats are never cached, so they will occur on every
single request. If you really desire the symlinks security checking, you can do something like this:

DocumentRoot "/www/htdocs"
<Directory "/">

Options FollowSymLinks
</Directory>

<Directory "/www/htdocs">
Options -FollowSymLinks +SymLinksIfOwnerMatch
</Directory>

This at least avoids the extra checks for the DOCUMENTROOT path. Note that you’ll need to add similar sections
if you have any ALIAS or REWRITERULE paths outside of your document root. For highest performance, and no
symlink protection, set FollowSymLinks everywhere, and never set SymLinksIfOwnerMatch.

9.2. APACHE PERFORMANCE TUNING 341

AllowOverride

Wherever in your URL-space you allow overrides (typically .htaccess files), Apache will attempt to open
.htaccess for each filename component. For example,

DocumentRoot "/www/htdocs"
<Directory "/">

AllowOverride all
</Directory>

and a request is made for the URI /index.html. Then Apache will attempt to open /.htaccess,
/www/ .htaccess, and /www/htdocs/.htaccess. The solutions are similar to the previous case of Options
FollowSymLinks. For highest performance use A11lowOverride None everywhere in your filesystem.

Negotiation

If at all possible, avoid content negotiation if you’re really interested in every last ounce of performance. In practice
the benefits of negotiation outweigh the performance penalties. There’s one case where you can speed up the server.
Instead of using a wildcard such as:

DirectoryIndex index
Use a complete list of options:
DirectoryIndex index.cgi index.pl index.shtml index.html

where you list the most common choice first.

Also note that explicitly creating a t ype—map file provides better performance than using MultiViews, as the
necessary information can be determined by reading this single file, rather than having to scan the directory for files.

If your site needs content negotiation, consider using type-map files, rather than the Options MultiViews
directive to accomplish the negotiation. See the Content Negotiation (p. 78) documentation for a full discussion of the
methods of negotiation, and instructions for creating t ype—-map files.

Memory-mapping

In situations where Apache 2.x needs to look at the contents of a file being delivered—for example, when doing server-
side-include processing—it normally memory-maps the file if the OS supports some form of mmap (2) .

On some platforms, this memory-mapping improves performance. However, there are cases where memory-mapping
can hurt the performance or even the stability of the httpd:

e On some operating systems, mmap does not scale as well as read (2) when the number of CPUs increases.
On multiprocessor Solaris servers, for example, Apache 2.x sometimes delivers server-parsed files faster when
mmap is disabled.

e If you memory-map a file located on an NFS-mounted filesystem and a process on another NFS client machine
deletes or truncates the file, your process may get a bus error the next time it tries to access the mapped file
content.

For installations where either of these factors applies, you should use EnableMMAP off to disable the memory-
mapping of delivered files. (Note: This directive can be overridden on a per-directory basis.)

342 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Sendfile

In situations where Apache 2.x can ignore the contents of the file to be delivered — for example, when serving static
file content — it normally uses the kernel sendfile support for the file if the OS supports the sendfile (2) operation.

On most platforms, using sendfile improves performance by eliminating separate read and send mechanics. However,
there are cases where using sendfile can harm the stability of the httpd:

e Some platforms may have broken sendfile support that the build system did not detect, especially if the binaries
were built on another box and moved to such a machine with broken sendfile support.

e With an NFS-mounted filesystem, the kernel may be unable to reliably serve the network file through its own
cache.

For installations where either of these factors applies, you should use EnableSendfile off to disable sendfile
delivery of file contents. (Note: This directive can be overridden on a per-directory basis.)

Process Creation

Prior to Apache 1.3 the MINSPARESERVERS, MAXSPARESERVERS, and STARTSERVERS settings all had drastic
effects on benchmark results. In particular, Apache required a "ramp-up" period in order to reach a number of
children sufficient to serve the load being applied. After the initial spawning of STARTSERVERS children, only one
child per second would be created to satisfy the MINSPARESERVERS setting. So a server being accessed by 100
simultaneous clients, using the default STARTSERVERS of 5 would take on the order of 95 seconds to spawn enough
children to handle the load. This works fine in practice on real-life servers because they aren’t restarted frequently.
But it does really poorly on benchmarks which might only run for ten minutes.

The one-per-second rule was implemented in an effort to avoid swamping the machine with the startup of new children.
If the machine is busy spawning children, it can’t service requests. But it has such a drastic effect on the perceived
performance of Apache that it had to be replaced. As of Apache 1.3, the code will relax the one-per-second rule. It
will spawn one, wait a second, then spawn two, wait a second, then spawn four, and it will continue exponentially
until it is spawning 32 children per second. It will stop whenever it satisfies the MINSPARESERVERS setting.

This appears to be responsive enough that it’s almost unnecessary to twiddle the MINSPARESERVERS, MAXSPARE-
SERVERS and STARTSERVERS knobs. When more than 4 children are spawned per second, a message will be emitted
to the ERRORLOG. If you see a lot of these errors, then consider tuning these settings. Use the MOD_STATUS output
as a guide.

Related to process creation is process death induced by the MAXCONNECTIONSPERCHILD setting. By default this is
0, which means that there is no limit to the number of connections handled per child. If your configuration currently
has this set to some very low number, such as 30, you may want to bump this up significantly. If you are running
SunOS or an old version of Solaris, limit this to 10000 or so because of memory leaks.

When keep-alives are in use, children will be kept busy doing nothing waiting for more requests on the already open
connection. The default KEEPALIVETIMEOUT of 5 seconds attempts to minimize this effect. The tradeoff here is
between network bandwidth and server resources. In no event should you raise this above about 60 seconds, as most
of the benefits are lost!.

Compile-Time Configuration Issues
Choosing an MPM

Apache 2.x supports pluggable concurrency models, called Multi-Processing Modules (p. 90) (MPMs). When building
Apache, you must choose an MPM to use. There are platform-specific MPMs for some platforms: MPM_NETWARE,

Thttp://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-4.html

http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-4.html

9.2. APACHE PERFORMANCE TUNING 343

MPMT_0S2, and MPM_WINNT. For general Unix-type systems, there are several MPMs from which to choose. The
choice of MPM can affect the speed and scalability of the httpd:

e The WORKER MPM uses multiple child processes with many threads each. Each thread handles one connection
at a time. Worker generally is a good choice for high-traffic servers because it has a smaller memory footprint
than the prefork MPM.

e The EVENT MPM is threaded like the Worker MPM, but is designed to allow more requests to be served simul-
taneously by passing off some processing work to supporting threads, freeing up the main threads to work on
new requests.

e The PREFORK MPM uses multiple child processes with one thread each. Each process handles one connection
at a time. On many systems, prefork is comparable in speed to worker, but it uses more memory. Prefork’s
threadless design has advantages over worker in some situations: it can be used with non-thread-safe third-party
modules, and it is easier to debug on platforms with poor thread debugging support.

For more information on these and other MPMs, please see the MPM documentation (p. 90) .

Modules

Since memory usage is such an important consideration in performance, you should attempt to eliminate modules that
you are not actually using. If you have built the modules as DSOs (p. 68) , eliminating modules is a simple matter
of commenting out the associated LOADMODULE directive for that module. This allows you to experiment with
removing modules and seeing if your site still functions in their absence.

If, on the other hand, you have modules statically linked into your Apache binary, you will need to recompile Apache
in order to remove unwanted modules.

An associated question that arises here is, of course, what modules you need, and which ones you don’t. The answer
here will, of course, vary from one web site to another. However, the minimal list of modules which you can get by
with tends to include MOD_MIME, MOD_DIR, and MOD_LOG_CONFIG. mod_log_config is, of course, optional, as
you can run a web site without log files. This is, however, not recommended.

Atomic Operations

Some modules, such as MOD_CACHE and recent development builds of the worker MPM, use APR’s atomic API. This
API provides atomic operations that can be used for lightweight thread synchronization.

By default, APR implements these operations using the most efficient mechanism available on each target OS/CPU
platform. Many modern CPUs, for example, have an instruction that does an atomic compare-and-swap (CAS) opera-
tion in hardware. On some platforms, however, APR defaults to a slower, mutex-based implementation of the atomic
API in order to ensure compatibility with older CPU models that lack such instructions. If you are building Apache
for one of these platforms, and you plan to run only on newer CPUs, you can select a faster atomic implementation at
build time by configuring Apache with the ——enable-nonportable-atomics option:

./buildconf
./configure —--with-mpm=worker --enable-nonportable-atomics=yes

The —-—enable-nonportable-atomics option is relevant for the following platforms:

e Solaris on SPARC
By default, APR uses mutex-based atomics on Solaris/SPARC. If you configure with
—-—enable-nonportable-atomics, however, APR generates code that uses a SPARC v8plus
opcode for fast hardware compare-and-swap. If you configure Apache with this option, the atomic operations

344 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

will be more efficient (allowing for lower CPU utilization and higher concurrency), but the resulting executable
will run only on UltraSPARC chips.

e Linux on x86
By default, APR uses mutex-based atomics on Linux. If you configure with
-—enable-nonportable-atomics, however, APR generates code that uses a 486 opcode for
fast hardware compare-and-swap. This will result in more efficient atomic operations, but the resulting
executable will run only on 486 and later chips (and not on 386).

mod_status and ExtendedStatus On

If you include MOD_STATUS and you also set ExtendedStatus On when building and running Apache, then on
every request Apache will perform two calls to gettimeofday (2) (or times (2) depending on your operating
system), and (pre-1.3) several extra calls to time (2). This is all done so that the status report contains timing
indications. For highest performance, set ExtendedStatus off (which is the default).

accept Serialization - Multiple Sockets

m Warning:

This section has not been fully updated to take into account changes made in the 2.x version of
the Apache HTTP Server. Some of the information may still be relevant, but please use it with
care.

This discusses a shortcoming in the Unix socket API. Suppose your web server uses multiple LISTEN statements
to listen on either multiple ports or multiple addresses. In order to test each socket to see if a connection is ready,
Apache uses select (2). select (2) indicates that a socket has zero or at least one connection waiting on it.
Apache’s model includes multiple children, and all the idle ones test for new connections at the same time. A naive
implementation looks something like this (these examples do not match the code, they’re contrived for pedagogical
purposes):

for (;;7) |
for (;;) {
fd_set accept_fds;

FD_ZERO (&accept_=fds);
for (i = first_socket; i <= last_socket; ++i) {
FD_SET (i, &accept_fds);
}
rc = select (last_socket+l, &accept_fds, NULL, NULL, NULL);
if (rc < 1) continue;
new_connection = -1;
for (i = first_socket; i <= last_socket; ++i) {
if (FD_ISSET (i, &accept_fds)) {
new_connection = accept (i, NULL, NULL);
if (new_connection != -1) break;

}

if (new_connection != -1) break;

}

process_the (new_connection);

9.2. APACHE PERFORMANCE TUNING 345

But this naive implementation has a serious starvation problem. Recall that multiple children execute this loop at the
same time, and so multiple children will block at select when they are in between requests. All those blocked
children will awaken and return from select when a single request appears on any socket. (The number of children
which awaken varies depending on the operating system and timing issues.) They will all then fall down into the loop
and try to accept the connection. But only one will succeed (assuming there’s still only one connection ready). The
rest will be blocked in accept. This effectively locks those children into serving requests from that one socket and
no other sockets, and they’ll be stuck there until enough new requests appear on that socket to wake them all up. This
starvation problem was first documented in PR#4672. There are at least two solutions.

One solution is to make the sockets non-blocking. In this case the accept won’t block the children, and they will
be allowed to continue immediately. But this wastes CPU time. Suppose you have ten idle children in select, and
one connection arrives. Then nine of those children will wake up, try to accept the connection, fail, and loop back
into select, accomplishing nothing. Meanwhile none of those children are servicing requests that occurred on other
sockets until they get back up to the select again. Overall this solution does not seem very fruitful unless you have
as many idle CPUs (in a multiprocessor box) as you have idle children (not a very likely situation).

Another solution, the one used by Apache, is to serialize entry into the inner loop. The loop looks like this (differences
highlighted):

for (;;) |
accept_mutex_on ();
for (;;) |
fd_set accept_fds;

FD_ZERO (&accept_£fds);
for (i = first_socket; 1 <= last_socket; ++1i) {
FD_SET (i, &accept_fds);
}
rc = select (last_socket+l, &accept_fds, NULL, NULL, NULL);
if (rc < 1) continue;

new_connection = -1;
for (i = first_socket; i <= last_socket; ++i) {
if (FD_ISSET (i, &accept_fds)) {
new_connection = accept (i, NULL, NULL);
if (new_connection != -1) break;
}
}
if (new_connection != -1) break;
}
accept_mutex_off ();

process the new_connection;

The functions accept_mutex_on and accept_mutex_off implement a mutual exclusion semaphore. Only one
child can have the mutex at any time. There are several choices for implementing these mutexes. The choice is defined
in src/conf.h (pre-1.3) or src/include/ap_config.h (1.3 or later). Some architectures do not have any
locking choice made, on these architectures it is unsafe to use multiple LISTEN directives.

The MUTEX directive can be used to change the mutex implementation of the mpm—-accept mutex at run-time.
Special considerations for different mutex implementations are documented with that directive.

Another solution that has been considered but never implemented is to partially serialize the loop — that is, let in a
certain number of processes. This would only be of interest on multiprocessor boxes where it’s possible that multiple

Zhttp://bugs.apache.org/index/full/467

http://bugs.apache.org/index/full/467

346 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

children could run simultaneously, and the serialization actually doesn’t take advantage of the full bandwidth. This is
a possible area of future investigation, but priority remains low because highly parallel web servers are not the norm.

Ideally you should run servers without multiple LISTEN statements if you want the highest performance. But read on.

accept Serialization - Single Socket

The above is fine and dandy for multiple socket servers, but what about single socket servers? In theory they shouldn’t
experience any of these same problems because all children can just block in accept (2) until a connection arrives,
and no starvation results. In practice this hides almost the same "spinning" behavior discussed above in the non-
blocking solution. The way that most TCP stacks are implemented, the kernel actually wakes up all processes blocked
in accept when a single connection arrives. One of those processes gets the connection and returns to user-space.
The rest spin in the kernel and go back to sleep when they discover there’s no connection for them. This spinning is
hidden from the user-land code, but it’s there nonetheless. This can result in the same load-spiking wasteful behavior
that a non-blocking solution to the multiple sockets case can.

For this reason we have found that many architectures behave more "nicely" if we serialize even the single socket
case. So this is actually the default in almost all cases. Crude experiments under Linux (2.0.30 on a dual Pentium
pro 166 w/128Mb RAM) have shown that the serialization of the single socket case causes less than a 3% decrease in
requests per second over unserialized single-socket. But unserialized single-socket showed an extra 100ms latency on
each request. This latency is probably a wash on long haul lines, and only an issue on LANSs. If you want to override
the single socket serialization, you can define SINGLE_LISTEN_UNSERIALIZED_ACCEPT, and then single-socket
servers will not serialize at all.

Lingering Close

As discussed in draft-ietf-http-connection-00.txt> section 8, in order for an HTTP server to reliably implement the
protocol, it needs to shut down each direction of the communication independently. (Recall that a TCP connection is
bi-directional. Each half is independent of the other.)

When this feature was added to Apache, it caused a flurry of problems on various versions of Unix because of short-
sightedness. The TCP specification does not state that the FIN_.WATIT_2 state has a timeout, but it doesn’t prohibit it.
On systems without the timeout, Apache 1.2 induces many sockets stuck forever in the FIN_WAIT_2 state. In many
cases this can be avoided by simply upgrading to the latest TCP/IP patches supplied by the vendor. In cases where the
vendor has never released patches (i.e., SunOS4 — although folks with a source license can patch it themselves), we
have decided to disable this feature.

There are two ways to accomplish this. One is the socket option SO_LINGER. But as fate would have it, this has never
been implemented properly in most TCP/IP stacks. Even on those stacks with a proper implementation (i.e., Linux
2.0.31), this method proves to be more expensive (cputime) than the next solution.

For the most part, Apache implements this in a function called 1ingering_close (in http_main.c). The func-
tion looks roughly like this:

void lingering_close (int s)
{
char junk_buffer[2048];

/+ shutdown the sending side */
shutdown (s, 1);

signal (SIGALRM, lingering_death);
alarm (30);

3http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt

http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt

9.2. APACHE PERFORMANCE TUNING 347

for (;;) |
select (s for reading, 2 second timeout);
if (error) break;
if (s is ready for reading) {
if (read (s, junk_buffer, sizeof (junk_buffer)) <= 0) {
break;
}

/* just toss away whatever is here x/

close (s);

This naturally adds some expense at the end of a connection, but it is required for a reliable implementation. As
HTTP/1.1 becomes more prevalent, and all connections are persistent, this expense will be amortized over more
requests. If you want to play with fire and disable this feature, you can define NO_LINGCLOSE, but this is not
recommended at all. In particular, as HTTP/1.1 pipelined persistent connections come into use, 1ingering._close
is an absolute necessity (and pipelined connections are faster*, so you want to support them).

Scoreboard File

Apache’s parent and children communicate with each other through something called the scoreboard. Ideally this
should be implemented in shared memory. For those operating systems that we either have access to, or have been
given detailed ports for, it typically is implemented using shared memory. The rest default to using an on-disk file.
The on-disk file is not only slow, but it is unreliable (and less featured). Peruse the src/main/conf . h file for your
architecture, and look for either USE_MMAP_SCOREBOARD or USE_SHMGET_SCOREBOARD. Defining one of those
two (as well as their companions HAVE_MMAP and HAVE_SHMGET respectively) enables the supplied shared memory
code. If your system has another type of shared memory, edit the file src/main/http_main.c and add the hooks
necessary to use it in Apache. (Send us back a patch too, please.)

:/>Hist0rical note: The Linux port of Apache didn’t start to use shared memory until version 1.2
of Apache. This oversight resulted in really poor and unreliable behavior of earlier versions of
Apache on Linux.

DYNAMIC_MODULE_LIMIT

If you have no intention of using dynamically loaded modules (you probably don’t if you’re reading this and tun-
ing your server for every last ounce of performance), then you should add -DDYNAMIC_MODULE_LIMIT=0 when
building your server. This will save RAM that’s allocated only for supporting dynamically loaded modules.

Appendix: Detailed Analysis of a Trace

Here is a system call trace of Apache 2.0.38 with the worker MPM on Solaris 8. This trace was collected using:

truss -1 -p httpd.child pid.

“http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

348 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

The -1 option tells truss to log the ID of the LWP (lightweight process—Solaris’ form of kernel-level thread) that
invokes each system call.

Other systems may have different system call tracing utilities such as strace, ktrace, or par. They all produce
similar output.

In this trace, a client has requested a 10KB static file from the httpd. Traces of non-static requests or requests with
content negotiation look wildly different (and quite ugly in some cases).

/67: accept (3, 0x00200BEC, 0x00200C0C, 1) (sleeping...)
/67: accept (3, 0x00200BEC, 0x00200cCO0C, 1) =9

In this trace, the listener thread is running within LWP #67.

:Note the lack of accept (2) serialization. On this particular platform, the worker MPM uses
an unserialized accept by default unless it is listening on multiple ports.

/65: lwp_park (0x00000000, O0) =0
/67: lwp_unpark (65, 1) =0

Upon accepting the connection, the listener thread wakes up a worker thread to do the request processing. In this trace,
the worker thread that handles the request is mapped to LWP #65.

/65: getsockname (9, 0x00200BA4, 0x00200BC4, 1) =0

In order to implement virtual hosts, Apache needs to know the local socket address used to accept the connection. It is
possible to eliminate this call in many situations (such as when there are no virtual hosts, or when LISTEN directives
are used which do not have wildcard addresses). But no effort has yet been made to do these optimizations.

/65: brk (0x002170E8) =0
/65: brk (0x002190E8) =0

The brk (2) calls allocate memory from the heap. It is rare to see these in a system call trace, because the httpd
uses custom memory allocators (apr_pool and apr_bucket_alloc) for most request processing. In this trace,
the httpd has just been started, so it must call malloc (3) to get the blocks of raw memory with which to create the
custom memory allocators.

/65: fcntl (9, F_GETFL, 0x00000000) = 2

/65: fstato64 (9, OxFAF7B818) =0

/65: getsockopt (9, 65535, 8192, 0xFAF7B918, OxFAF7B910, 2190656) = 0
/65: fstatoe4 (9, OxFAFT7B818) =0

/65: getsockopt (9, 65535, 8192, O0xFAF7B918, O0xFAF7B914, 2190656) = 0
/65: setsockopt (9, 65535, 8192, OxFAF7B918, 4, 2190656) = 0

/65: fcntl (9, F_SETFL, 0x00000082) =0

Next, the worker thread puts the connection to the client (file descriptor 9) in non-blocking mode. The
setsockopt (2) and getsockopt (2) calls are a side-effect of how Solaris’ libc handles fcnt1 (2) on sockets.

9.2. APACHE PERFORMANCE TUNING 349

/65: read(9, " G E T / 10k . htm".., 8000) = 97

The worker thread reads the request from the client.

/65: stat ("/var/httpd/apache/httpd-8999/htdocs/10k.html", OxFAF7B978) = 0
/65: open ("/var/httpd/apache/httpd-8999/htdocs/10k.html", O_RDONLY) = 10

This httpd has been configured with Opt ions FollowSymLinks and AllowOverride None. Thus it doesn’t
need to 1stat (2) each directory in the path leading up to the requested file, nor check for .htaccess files. It
simply calls stat (2) to verify that the file: 1) exists, and 2) is a regular file, not a directory.

/65: sendfilev (0, 9, 0x00200F90, 2, OxFAF7B53C) = 10269

In this example, the httpd is able to send the HTTP response header and the requested file with a single
sendfilev (2) system call. Sendfile semantics vary among operating systems. On some other systems, it is neces-
sarytodoawrite (2) orwritev (2) call to send the headers before calling sendfile (2).

/65: write(4, "1 2 7 . 0 . 0 . 1 - ".., 78) =78

This write (2) call records the request in the access log. Note that one thing missing from this trace is a t ime (2)
call. Unlike Apache 1.3, Apache 2.x uses gettimeofday (3) to look up the time. On some operating systems,
like Linux or Solaris, gett imeofday has an optimized implementation that doesn’t require as much overhead as a
typical system call.

/65: shutdown (9, 1, 1) =0

/65: poll (OxFAF7B980, 1, 2000) =1

/65: read (9, OxFAF7BC20, 512) =0

/65: close (9) =0
The worker thread does a lingering close of the connection.

/65: close (10) =0

/65: lwp_park (0x00000000, 0) (sleeping...)

Finally the worker thread closes the file that it has just delivered and blocks until the listener assigns it another con-
nection.

/67: accept (3, O0x001FEB74, O0xO001FEB94, 1) (sleeping...)

Meanwhile, the listener thread is able to accept another connection as soon as it has dispatched this connection to
a worker thread (subject to some flow-control logic in the worker MPM that throttles the listener if all the available
workers are busy). Though it isn’t apparent from this trace, the next accept (2) can (and usually does, under high
load conditions) occur in parallel with the worker thread’s handling of the just-accepted connection.

350 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

9.3 Performance Scaling

The Performance Tuning page in the Apache 1.3 documentation says:

" Apache is a general webserver, which is designed to be correct first, and fast second. Even so,
its performance is quite satisfactory. Most sites have less than 10Mbits of outgoing bandwidth, which
Apache can fill using only a low end Pentium-based webserver."

However, this sentence was written a few years ago, and in the meantime several things have happened. On one hand,
web server hardware has become much faster. On the other hand, many sites now are allowed much more than ten
megabits per second of outgoing bandwidth. In addition, web applications have become more complex. The classic
brochureware site is alive and well, but the web has grown up substantially as a computing application platform and
webmasters may find themselves running dynamic content in Perl, PHP or Java, all of which take a toll on performance.

Therefore, in spite of strides forward in machine speed and bandwidth allowances, web server performance and web
application performance remain areas of concern. In this documentation several aspects of web server performance
will be discussed.

What Will and Will Not Be Discussed

The session will focus on easily accessible configuration and tuning options for Apache httpd 2.2 and 2.4 as well
as monitoring tools. Monitoring tools will allow you to observe your web server to gather information about its
performance, or lack thereof. We’ll assume that you don’t have an unlimited budget for server hardware, so the
existing infrastructure will have to do the job. You have no desire to compile your own Apache, or to recompile the
operating system kernel. We do assume, though, that you have some familiarity with the Apache httpd configuration
file.

Monitoring Your Server

The first task when sizing or performance-tuning your server is to find out how your system is currently performing.
By monitoring your server under real-world load, or artificially generated load, you can extrapolate its behavior under
stress, such as when your site is mentioned on Slashdot.

Monitoring Tools
top

The top tool ships with Linux and FreeBSD. Solaris offers prstat (1). It collects a number of statistics for the
system and for each running process, then displays them interactively on your terminal. The data displayed is refreshed
every second and varies by platform, but typically includes system load average, number of processes and their current
states, the percent CPU(s) time spent executing user and system code, and the state of the virtual memory system.
The data displayed for each process is typically configurable and includes its process name and ID, priority and nice
values, memory footprint, and percentage CPU usage. The following example shows multiple httpd processes (with
MPM worker and event) running on an Linux (Xen) system:

9.3. PERFORMANCE SCALING 351
top - 23:10:58 up 71 days, 6:14, 4 users, load average: 0.25, 0.53, O.
Tasks: 163 total, 1 running, 162 sleeping, 0 stopped, 0 zombie
Cpu(s): 1ll.6%us, 0.7%sy, 0.0%ni, 87.3%id, 0.4%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 2621656k total, 2178684k used, 442972k free, 100500k buffers
Swap: 4194296k total, 860584k used, 3333712k free, 1157552k cached

PID USER PR NI VIRT RES SHR S %$CPU $MEM TIME+ COMMAND
16687 example_ 20 0 1200m 547m 179m S 45 21.4 1:09.59 httpd-worker
15195 www 20 0 441m 33m 2468 S 0 1.3 0:41.41 httpd-worker

1 root 20 0 10312 328 308 S 0 0.0 0:33.17 init
2 root 15 -5 0 0 0 S 0 0.0 0:00.00 kthreadd
3 root RT -5 0 0 0 s 0 0.0 0:00.14 migration/0
4 root 15 -5 0 0 0 S 0 0.0 0:04.58 ksoftirqgd/0
5 root RT -5 0 0 0 s 0 0.0 4:45.89 watchdog/0
6 root 15 -5 0 0 0 s 0 0.0 1:42.52 events/0
7 root 15 -5 0 0 0 S 0 0.0 0:00.00 khelper
19 root 15 -5 0 0 0 S 0 0.0 0:00.00 xenwatch
20 root 15 -5 0 0 0 s 0 0.0 0:00.00 xenbus
28 root RT -5 0 0 0 S 0 0.0 0:00.14 migration/1
29 root 15 -5 0 0 0 S 0 0.0 0:00.20 ksoftirgd/1l
30 root RT -5 0 0 0 s 0 0.0 0:05.96 watchdog/1
31 root 15 -5 0 0 0 s 0 0.0 1:18.35 events/1
32 root RT -5 0 0 0 S 0 0.0 0:00.08 migration/2
33 root 15 -5 0 0 0 s 0 0.0 0:00.18 ksoftirgd/2
34 root RT -5 0 0 0 S 0 0.0 0:06.00 watchdog/2
35 root 15 -5 0 0 0 s 0 0.0 1:08.39 events/2
36 root RT -5 0 0 0 S 0 0.0 0:00.10 migration/3
37 root 15 -5 0 0 0 S 0 0.0 0:00.16 ksoftirqgd/3
38 root RT -5 0 0 0 S 0 0.0 0:06.08 watchdog/3
39 root 15 -5 0 0 0 s 0 0.0 1:22.81 events/3
68 root 15 -5 0 0 0 S 0 0.0 0:06.28 kblockd/0
69 root 15 -5 0 0 0 s 0 0.0 0:00.04 kblockd/1
70 root 15 -5 0 0 0 s 0 0.0 0:00.04 kblockd/2

Top is a wonderful tool even though it’s slightly resource intensive (when running, its own process is usually in
the top ten CPU gluttons). It is indispensable in determining the size of a running process, which comes in handy
when determining how many server processes you can run on your machine. How to do this is described in sizing
MaxClients. Top is, however, an interactive tool and running it continuously has few if any advantages.

free

This command is only available on Linux. It shows how much memory and swap space is in use. Linux allocates
unused memory as file system cache. The free command shows usage both with and without this cache. The free
command can be used to find out how much memory the operating system is using, as described in the paragraph

sizing MaxClients. The output of free looks like this:

sctemme@brutus:~$ free

total used free shared buffers
Mem: 4026028 3901892 124136 0 253144
-/+ buffers/cache: 2807704 1218324
Swap: 3903784 12540 3891244

cached
841044

352 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

vmstat

This command is available on many unix platforms. It displays a large number of operating system metrics. Run with-
out argument, it displays a status line for that moment. When a numeric argument is added, the status is redisplayed at
designated intervals. For example, vmstat 5 causes the information to reappear every five seconds. Vmstat displays
the amount of virtual memory in use, how much memory is swapped in and out each second, the number of processes
currently running and sleeping, the number of interrupts and context switches per second and the usage percentages of
the CPU.

The following is vmstat output of an idle server:

[sctemme@GayDeceiver sctemme]$ vmstat 5 3

procs memory swap io system cpu
rbw swpd free buff cache si so bi bo in cs us sy id
000 0 186252 6688 37516 0 0 12 5 47 311 0 1 99
000 0 186244 6696 37516 0 0 0 16 41 314 0 0 100
000 0 186236 6704 37516 0 0 0 9 44 314 0 0 100

And this is output of a server that is under a load of one hundred simultaneous connections fetching static content:

[sctemme@GayDeceiver sctemme]$ vmstat 5 3

procs memory swap io system cpu
rbw swpd free buff cache si so bi bo in cs us sy 1id
101 0 162580 6848 40056 0 0 11 5 150 324 1 1 98
6 01 0 163280 6856 40248 0 0 0 66 6384 1117 42 25 32
11 0 0 0 162780 6864 40436 0 0 0 61 6309 1165 33 28 40

The first line gives averages since the last reboot. The subsequent lines give information for five second intervals. The
second argument tells vmstat to generate three reports and then exit.

SE Toolkit

The SE Toolkit is a system monitoring toolkit for Solaris. Its programming language is based on the C preprocessor
and comes with a number of sample scripts. It can use both the command line and the GUI to display information.
It can also be programmed to apply rules to the system data. The example script shown in Figure 2, Zoom.se, shows
green, orange or red indicators when utilization of various parts of the system rises above certain thresholds. Another
included script, Virtual Adrian, applies performance tuning metrics according to.

The SE Toolkit has drifted around for a while and has had several owners since its inception. It seems that it has
now found a final home at Sunfreeware.com, where it can be downloaded at no charge. There is a single package for
Solaris 8, 9 and 10 on SPARC and x86, and includes source code. SE Toolkit author Richard Pettit has started a new
company, Captive Metrics4 that plans to bring to market a multiplatform monitoring tool built on the same principles
as SE Toolkit, written in Java.

DTrace

Given that DTrace is available for Solaris, FreeBSD and OS X, it might be worth exploring it. There’s also mod_dtrace
available for httpd.

9.3. PERFORMANCE SCALING 353

mod_status

The mod_status module gives an overview of the server performance at a given moment. It generates an HTML page
with, among others, the number of Apache processes running and how many bytes each has served, and the CPU load
caused by httpd and the rest of the system. The Apache Software Foundation uses MOD_STATUS on its own web site’.
If you put the ExtendedStatus On directive in your httpd. conf, the MOD_STATUS page will give you more
information at the cost of a little extra work per request.

Web Server Log Files

Monitoring and analyzing the log files httpd writes is one of the most effective ways to keep track of your server health
and performance. Monitoring the error log allows you to detect error conditions, discover attacks and find performance
issues. Analyzing the access logs tells you how busy your server is, which resources are the most popular and where
your users come from. Historical log file data can give you invaluable insight into trends in access to your server,
which allows you to predict when your performance needs will overtake your server capacity.

Error Log

The error log will contain messages if the server has reached the maximum number of active processes or the maximum
number of concurrently open files. The error log also reflects when processes are being spawned at a higher-than-usual
rate in response to a sudden increase in load. When the server starts, the stderr file descriptor is redirected to the error
logfile, so any error encountered by httpd after it opens its logfiles will appear in this log. This makes it good practice
to review the error log frequently.

Before Apache httpd opens its logfiles, any errors will be written to the stderr stream. If you start httpd manu-
ally, this error information will appear on your terminal and you can use it directly to troubleshoot your server.
If your httpd is started by a startup script, the destination of early error messages depends on their design. The
/var/log/messages file is usually a good bet. On Windows, early error messages are written to the Applications
Event Log, which can be viewed through the Event Viewer in Administrative Tools.

The Error Log is configured through the ERRORLOG and LOGLEVEL configuration directives. The error log of
httpd’s main server configuration receives the log messages that pertain to the entire server: startup, shutdown, crashes,
excessive process spawns, etc. The ERRORLOG directive can also be used in virtual host containers. The error log
of a virtual host receives only log messages specific to that virtual host, such as authentication failures and ’File not
Found’ errors.

On a server that is visible to the Internet, expect to see a lot of exploit attempt and worm attacks in the error log. A lot
of these will be targeted at other server platforms instead of Apache, but the current state of affairs is that attack scripts
just throw everything they have at any open port, regardless of which server is actually running or what applications
might be installed. You could block these attempts using a firewall or mod_security®, but this falls outside the scope of
this discussion.

The LOGLEVEL directive determines the level of detail included in the logs. There are eight log levels as described
here:

Shttp://apache.org/server-status
Shttp://www.modsecurity.org/

http://apache.org/server-status
http://www.modsecurity.org/

354 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Level Description

emerg Emergencies - system is unusable.
alert Action must be taken immediately.
crit Critical Conditions.

error Error conditions.

warn Warning conditions.

notice Normal but significant condition.
info Informational.

debug Debug-level messages

The default log level is warn. A production server should not be run on debug, but increasing the level of detail in the
error log can be useful during troubleshooting. Starting with 2.3.8 LOGLEVEL can be specified on a per module basis:

LogLevel debug mod_ssl:warn

This puts all of the server in debug mode, except for MOD_SSL, which tends to be very noisy.

Access Log

Apache httpd keeps track of every request it services in its access log file. In addition to the time and nature of a
request, httpd can log the client IP address, date and time of the request, the result and a host of other information. The
various logging format features are documented in the manual. This file exists by default for the main server and can
be configured per virtual host by using the TRANSFERLOG or CUSTOMLOG configuration directive.

The access logs can be analyzed with any of several free and commercially available programs. Popular free analysis
packages include Analog and Webalizer. Log analysis should be done offline so the web server machine is not burdened
by processing the log files. Most log analysis packages understand the Common Log Format. The fields in the log
lines are explained in the following:

195.54.228.42 - - [24/Mar/2007:23:05:11 —-0400] "GET /sander/feed/ HTTP/1.1" 200 9747
64.34.165.214 - - [24/Mar/2007:23:10:11 -0400] "GET /sander/feed/atom HTTP/1.1" 200 9068
60.28.164.72 — - [24/Mar/2007:23:11:41 -0400] "GET / HTTP/1.0" 200 618

85.140.155.56 — — [24/Mar/2007:23:14:12 -0400] "GET /sander/2006/09/27/44/ HTTP/1.1"™ 200 141
85.140.155.56 - — [24/Mar/2007:23:14:15 -0400] "GET /sander/2006/09/21/gore-tax-pollution/

74.6.72.187 - [24/Mar/2007:23:18:11 -0400] "GET /sander/2006/09/27/44/ HTTP/1.0" 200 14172

74.6.72.229 - - [24/Mar/2007:23:24:22 -0400] "GET /sander/2006/11/21/os-java/ HTTP/1.0" 200

Field Content Explanation

Client IP 195.54.228.42 IP address where the request originated

RFC 1413 ident - Remote user identity as reported by their
identd

username - Remote username as authenticated by
Apache

timestamp [24/Mar/2007:23:05:11 -0400] Date and time of request

Request "GET /sander/feed/ HTTP/1.1" Request line

Status Code 200 Response code

Content Bytes 9747 Bytes transferred w/o headers

Rotating Log Files

There are several reasons to rotate logfiles. Even though almost no operating systems out there have a hard file size
limit of two Gigabytes anymore, log files simply become too large to handle over time. Additionally, any periodic log

9.3. PERFORMANCE SCALING 355

file analysis should not be performed on files to which the server is actively writing. Periodic logfile rotation helps
keep the analysis job manageable, and allows you to keep a closer eye on usage trends.

On unix systems, you can simply rotate logfiles by giving the old file a new name using mv. The server will keep
writing to the open file even though it has a new name. When you send a graceful restart signal to the server, it will
open a new logfile with the configured name. For example, you could run a script from cron like this:

APACHE=/usr/local/apache?2

HTTPD=$APACHE/bin/httpd

mv S$SAPACHE/logs/access_log $APACHE/logarchive/access_log-‘date +%F‘
SHTTPD -k graceful

This approach also works on Windows, just not as smoothly. While the httpd process on your Windows server will keep
writing to the log file after it has been renamed, the Windows Service that runs Apache can not do a graceful restart.
Restarting a Service on Windows means stopping it and then starting it again. The advantage of a graceful restart is
that the httpd child processes get to complete responding to their current requests before they exit. Meanwhile, the
httpd server becomes immediately available again to serve new requests. The stop-start that the Windows Service has
to perform will interrupt any requests currently in progress, and the server is unavailable until it is started again. Plan
for this when you decide the timing of your restarts.

A second approach is to use piped logs. From the CUSTOMLOG, TRANSFERLOG or ERRORLOG directives you can
send the log data into any program using a pipe character (|). For instance:

CustomLog "|/usr/local/apache2/bin/rotatelogs /var/log/access_log

86400" common

The program on the other end of the pipe will receive the Apache log data on its stdin stream, and can do with this data
whatever it wants. The rotatelogs program that comes with Apache seamlessly turns over the log file based on time
elapsed or the amount of data written, and leaves the old log files with a timestamp suffix to its name. This method for
rotating logfiles works well on unix platforms, but is currently broken on Windows.

Logging and Performance

Writing entries to the Apache log files obviously takes some effort, but the information gathered from the logs is so
valuable that under normal circumstances logging should not be turned off. For optimal performance, you should put
your disk-based site content on a different physical disk than the server log files: the access patterns are very different.
Retrieving content from disk is a read operation in a fairly random pattern, and log files are written to disk sequentially.

Do not run a production server with your error LOGLEVEL set to debug. This log level causes a vast amount of
information to be written to the error log, including, in the case of SSL access, complete dumps of BIO read and write
operations. The performance implications are significant: use the default warn level instead.

If your server has more than one virtual host, you may give each virtual host a separate access logfile. This makes it
easier to analyze the logfile later. However, if your server has many virtual hosts, all the open logfiles put a resource
burden on your system, and it may be preferable to log to a single file. Use the %v format character at the start of your
LOGFORMAT and starting 2.3.8 of your ERRORLOG to make httpd print the hostname of the virtual host that received
the request or the error at the beginning of each log line. A simple Perl script can split out the log file after it rotates:
one is included with the Apache source under support/split—-logfile.

You can use the BUFFEREDLOGS directive to have Apache collect several log lines in memory before writing them to
disk. This might yield better performance, but could affect the order in which the server’s log is written.

356 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Generating A Test Load

It is useful to generate a test load to monitor system performance under realistic operating circumstances. Besides
commercial packages such as LoadRunner’ ,there are a number of freely available tools to generate a test load against
your web server.

e Apache ships with a test program called ab, short for Apache Bench. It can generate a web server load by
repeatedly asking for the same file in rapid succession. You can specify a number of concurrent connections and
have the program run for either a given amount of time or a specified number of requests.

o Another freely available load generator is http load11 . This program works with a URL file and can be compiled
with SSL support.

e The Apache Software Foundation offers a tool named flood12 . Flood is a fairly sophisticated program that is
configured through an XML file.

o Finally, JMeter13 , a Jakarta subproject, is an all-Java load-testing tool. While early versions of this application
were slow and difficult to use, the current version 2.1.1 seems to be versatile and useful.

e ASF external projects, that have proven to be quite good: grinder, httperf, tsung, FunkLoad®

When you load-test your web server, please keep in mind that if that server is in production, the test load may negatively
affect the server’s response. Also, any data traffic you generate may be charged against your monthly traffic allowance.

Configuring for Performance
Httpd Configuration

The Apache 2.2 httpd is by default a pre-forking web server. When the server starts, the parent process spawns a
number of child processes that do the actual work of servicing requests. But Apache httpd 2.0 introduced the concept
of the Multi-Processing Module (MPM). Developers can write MPMs to suit the process- or threadingarchitecture of
their specific operating system. Apache 2 comes with special MPMs for Windows, OS/2, Netware and BeOS. On
unix-like platforms, the two most popular MPMs are Prefork and Worker. The Prefork MPM offers the same pre-
forking process model that Apache 1.3 uses. The Worker MPM runs a smaller number of child processes, and spawns
multiple request handling threads within each child process. In 2.4 MPMs are no longer hard-wired. They too can be
exchanged via LOADMODULE. The default MPM in 2.4 is the event MPM.

The maximum number of workers, be they pre-forked child processes or threads within a process, is an indication
of how many requests your server can manage concurrently. It is merely a rough estimate because the kernel can
queue connection attempts for your web server. When your site becomes busy and the maximum number of workers
is running, the machine doesn’t hit a hard limit beyond which clients will be denied access. However, once requests
start backing up, system performance is likely to degrade.

Finally, if the httpd server in question is not executing any third-party code, via mod_php, mod_perl or similar, we
recommend the use of MPM_EVENT. This MPM is ideal for situations where httpd serves as a thin layer between
clients and backend servers doing the real job, such as a proxy or cache.

MaxClients

The MaxClients directive in your Apache httpd configuration file specifies the maximum number of workers your
server can create. It has two related directives, MinSpareServers and MaxSpareServers ,which specify
the number of workers Apache keeps waiting in the wings ready to serve requests. The absolute maximum number of
processes is configurable through the ServerLimit directive.

7http://learnloadrunner.com/
8http://funkload.nuxeo.org/

http://learnloadrunner.com/
http://funkload.nuxeo.org/

9.3. PERFORMANCE SCALING 357

Spinning Threads

For the prefork MPM of the above directives are all there is to determining the process limit. However, if you are run-
ning a threaded MPM the situation is a little more complicated. Threaded MPMs support the ThreadsPerChild
directivel . Apache requires that MaxClients is evenly divisible by ThreadsPerChild .If you set either di-
rective to a number that doesn’t meet this requirement, Apache will send a message of complaint to the error log and
adjust the ThreadsPerChild value downwards until it is an even factor of MaxClients.

Sizing MaxClients

Optimally, the maximum number of processes should be set so that all the memory on your system is used, but no
more. If your system gets so overloaded that it needs to heavily swap core memory out to disk, performance will
degrade quickly. The formula for determining MAXCLIENTS is fairly simple:

total RAM - RAM for OS - RAM for external programs
MaxClients = ———————————————————————— - ———

RAM per httpd process

The various amounts of memory allocated for the OS, external programs and the httpd processes is best determined
by observation: use the top and free commands described above to determine the memory footprint of the OS without
the web server running. You can also determine the footprint of a typical web server process from top: most top
implementations have a Resident Size (RSS) column and a Shared Memory column.

The difference between these two is the amount of memory per-process. The shared segment really exists only once
and is used for the code and libraries loaded and the dynamic inter-process tally, or ’scoreboard,” that Apache keeps.
How much memory each process takes for itself depends heavily on the number and kind of modules you use. The
best approach to use in determining this need is to generate a typical test load against your web site and see how large
the httpd processes become.

The RAM for external programs parameter is intended mostly for CGI programs and scripts that run outside the web
server process. However, if you have a Java virtual machine running Tomcat on the same box it will need a significant
amount of memory as well. The above assessment should give you an idea how far you can push MaxClients ,but
it is not an exact science. When in doubt, be conservative and use a low MaxClients value. The Linux kernel
will put extra memory to good use for caching disk access. On Solaris you need enough available real RAM memory
to create any process. If no real memory is available, httpd will start writing ’No space left on device’ messages to
the error log and be unable to fork additional child processes, so a higher MaxClients value may actually be a
disadvantage.

Selecting your MPM

The prime reason for selecting a threaded MPM is that threads consume fewer system resources than processes, and
it takes less effort for the system to switch between threads. This is more true for some operating systems than for
others. On systems like Solaris and AIX, manipulating processes is relatively expensive in terms of system resources.
On these systems, running a threaded MPM makes sense. On Linux, the threading implementation actually uses one
process for each thread. Linux processes are relatively lightweight, but it means that a threaded MPM offers less of a
performance advantage than in other environments.

Running a threaded MPM can cause stability problems in some situations For instance, should a child process of a
preforked MPM crash, at most one client connection is affected. However, if a threaded child crashes, all the threads
in that process disappear, which means all the clients currently being served by that process will see their connection
aborted. Additionally, there may be so-called "thread-safety" issues, especially with third-party libraries. In threaded
applications, threads may access the same variables indiscriminately, not knowing whether a variable may have been
changed by another thread.

358 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

This has been a sore point within the PHP community. The PHP processor heavily relies on third-party libraries and
cannot guarantee that all of these are thread-safe. The good news is that if you are running Apache on Linux, you can
run PHP in the preforked MPM without fear of losing too much performance relative to the threaded option.

Spinning Locks

Apache httpd maintains an inter-process lock around its network listener. For all practical purposes, this means that
only one httpd child process can receive a request at any given time. The other processes are either servicing requests
already received or are ’camping out’ on the lock, waiting for the network listener to become available. This process
is best visualized as a revolving door, with only one process allowed in the door at any time. On a heavily loaded web
server with requests arriving constantly, the door spins quickly and requests are accepted at a steady rate. On a lightly
loaded web server, the process that currently "holds" the lock may have to stay in the door for a while, during which
all the other processes sit idle, waiting to acquire the lock. At this time, the parent process may decide to terminate
some children based on its MaxSpareServers directive.

The Thundering Herd

The function of the “accept mutex’ (as this inter-process lock is called) is to keep request reception moving along in
an orderly fashion. If the lock is absent, the server may exhibit the Thundering Herd syndrome.

Consider an American Football team poised on the line of scrimmage. If the football players were Apache processes
all team members would go for the ball simultaneously at the snap. One process would get it, and all the others would
have to lumber back to the line for the next snap. In this metaphor, the accept mutex acts as the quarterback, delivering
the connection "ball" to the appropriate player process.

Moving this much information around is obviously a lot of work, and, like a smart person, a smart web server tries to
avoid it whenever possible. Hence the revolving door construction. In recent years, many operating systems, including
Linux and Solaris, have put code in place to prevent the Thundering Herd syndrome. Apache recognizes this and if
you run with just one network listener, meaning one virtual host or just the main server, Apache will refrain from using
an accept mutex. If you run with multiple listeners (for instance because you have a virtual host serving SSL requests),
it will activate the accept mutex to avoid internal conflicts.

You can manipulate the accept mutex with the AcceptMutex directive. Besides turning the accept mutex off, you
can select the locking mechanism. Common locking mechanisms include fentl, System V Semaphores and pthread
locking. Not all are available on every platform, and their availability also depends on compile-time settings. The
various locking mechanisms may place specific demands on system resources: manipulate them with care.

There is no compelling reason to disable the accept mutex. Apache automatically recognizes the single listener situa-
tion described above and knows if it is safe to run without mutex on your platform.

Tuning the Operating System

People often look for the *magic tune-up’ that will make their system perform four times as fast by tweaking just one
little setting. The truth is, present-day UNIX derivatives are pretty well adjusted straight out of the box and there is
not a lot that needs to be done to make them perform optimally. However, there are a few things that an administrator
can do to improve performance.

RAM and Swap Space

The usual mantra regarding RAM is "more is better". As discussed above, unused RAM is put to good use as file
system cache. The Apache processes get bigger if you load more modules, especially if you use modules that generate

9.3. PERFORMANCE SCALING 359

dynamic page content within the processes, like PHP and mod_perl. A large configuration file-with many virtual hosts-
also tends to inflate the process footprint. Having ample RAM allows you to run Apache with more child processes,
which allows the server to process more concurrent requests.

While the various platforms treat their virtual memory in different ways, it is never a good idea to run with less disk-
based swap space than RAM. The virtual memory system is designed to provide a fallback for RAM, but when you
don’t have disk space available and run out of swappable memory, your machine grinds to a halt. This can crash your
box, requiring a physical reboot for which your hosting facility may charge you.

Also, such an outage naturally occurs when you least want it: when the world has found your website and is beating
a path to your door. If you have enough disk-based swap space available and the machine gets overloaded, it may get
very, very slow as the system needs to swap memory pages to disk and back, but when the load decreases the system
should recover. Remember, you still have MaxClients to keep things in hand.

Most unix-like operating systems use designated disk partitions for swap space. When a system starts up it finds all
swap partitions on the disk(s), by partition type or because they are listed in the file /etc/fstab ,and automatically
enables them. When adding a disk or installing the operating system, be sure to allocate enough swap space to
accommodate eventual RAM upgrades. Reassigning disk space on a running system is a cumbersome process.

Plan for available hard drive swap space of at least twice your amount of RAM, perhaps up to four times in situations
with frequent peaking loads. Remember to adjust this configuration whenever you upgrade RAM on your system. In
a pinch, you can use a regular file as swap space. For instructions on how to do this, see the manual pages for the
mkswap and swapon oOr swap programs.

ulimit: Files and Processes

Given a machine with plenty of RAM and processor capacity, you can run hundreds of Apache processes if necessary.
. . and if your kernel allows it.

Consider a situation in which several hundred web servers are running; if some of these need to spawn CGI processes,
the maximum number of processes would occur quickly.

However, you can change this limit with the command

ulimit [-H|-S] —-u [newvalue]

This must be changed before starting the server, since the new value will only be available to the current shell and
programs started from it. In newer Linux kernels the default has been raised to 2048. On FreeBSD, the number seems
to be the rather unusual 513. In the default user shell on this system, csh the equivalent is 1imit and works
analogous to the Bourne-like ulimit

limit [-h] maxproc [newvalue]

Similarly, the kernel may limit the number of open files per process. This is generally not a problem for pre-forked
servers, which just handle one request at a time per process. Threaded servers, however, serve many requests per
process and much more easily run out of available file descriptors. You can increase the maximum number of open
files per process by running the

ulimit -n [newvalue]

command. Once again, this must be done prior to starting Apache.

360 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Setting User Limits on System Startup

Under Linux, you can set the ulimit parameters on bootup by editing the /etc/security/limits.conf file.
This file allows you to set soft and hard limits on a per-user or per-group basis; the file contains commentary explaining
the options. To enable this, make sure that the file /etc/pam.d/login contains the line

session required /lib/security/pam-limits.so

All items can have a ’soft’ and a "hard’ limit: the first is the default setting and the second the maximum value for that
item.

In FreeBSD’s /etc/login.conf these resources can be limited or extended system wide, analogously to
limits.conf. Soft’ limits can be specified with —cur and ’hard’ limits with —max.

Solaris has a similar mechanism for manipulating limit values at boot time: In /etc/system you can set kernel
tunables valid for the entire system at boot time. These are the same tunables that can be set with the mdb kernel
debugger during run time. The soft and hard limit corresponding to ulimit -u can be set via:

set rlim_fd max=65536
set rlim_fd_cur=2048

Solaris calculates the maximum number of allowed processes per user (maxuprc) based on the total amount available
memory on the system (maxusers). You can review the numbers with

sysdef -1 | grep maximum

but it is not recommended to change them.

Turn Off Unused Services and Modules

Many UNIX and Linux distributions come with a slew of services turned on by default. You probably need few of
them. For example, your web server does not need to be running sendmail, nor is it likely to be an NFS server, etc.
Turn them off.

On Red Hat Linux, the chkconfig tool will help you do this from the command line. On Solaris systems svcs and
svcadm will show which services are enabled and disable them respectively.

In a similar fashion, cast a critical eye on the Apache modules you load. Most binary distributions of Apache httpd,
and pre-installed versions that come with Linux distributions, have their modules enabled through the LOADMODULE
directive.

Unused modules may be culled: if you don’t rely on their functionality and configuration directives, you can turn
them off by commenting out the corresponding LOADMODULE lines. Read the documentation on each module’s
functionality before deciding whether to keep it enabled. While the performance overhead of an unused module is
small, it’s also unnecessary.

Caching Content

Requests for dynamically generated content usually take significantly more resources than requests for static content.
Static content consists of simple filespages, images, etc.-on disk that are very efficiently served. Many operating
systems also automatically cache the contents of frequently accessed files in memory.

9.3. PERFORMANCE SCALING 361

Processing dynamic requests, on the contrary, can be much more involved. Running CGI scripts, handing off requests
to an external application server and accessing database content can introduce significant latency and processing load
to a busy web server. Under many circumstances, performance can be improved by turning popular dynamic requests
into static requests. In this section, two approaches to this will be discussed.

Making Popular Pages Static

By pre-rendering the response pages for the most popular queries in your application, you can gain a significant
performance improvement without giving up the flexibility of dynamically generated content. For instance, if your
application is a flower delivery service, you would probably want to pre-render your catalog pages for red roses during
the weeks leading up to Valentine’s Day. When the user searches for red roses, they are served the pre-rendered page.
Queries for, say, yellow roses will be generated directly from the database. The mod_rewrite module included with
Apache is a great tool to implement these substitutions.

Example: A Statically Rendered Blog

Blosxom is a lightweight web log package that runs as a CGI. It is written in Perl and uses plain text files for entry
input. Besides running as CGI, Blosxom can be run from the command line to pre-render blog pages. Pre-rendering
pages to static HTML can yield a significant performance boost in the event that large numbers of people actually start
reading your blog.

To run blosxom for static page generation, edit the CGI script according to the documentation. Set the $static dir
variable to the DOCUMENTROOT of the web server, and run the script from the command line as follows:

$ perl blosxom.cgl -password=’whateveryourpassword’ ‘

This can be run periodically from Cron, after you upload content, etc. To make Apache substitute the statically ren-
dered pages for the dynamic content, we’ll use mod_rewrite. This module is included with the Apache source code, but
is not compiled by default. It can be built with the server by passing the option ——enable—-rewrite [=shared]
to the configure command. Many binary distributions of Apache come with MOD_REWRITE included. The following
is an example of an Apache virtual host that takes advantage of pre-rendered blog pages:

Listen *:8001
<VirtualHost =:8001>

ServerName blog.sandla.org:8001

ServerAdmin sander@temme.net

DocumentRoot "/home/sctemme/inst/blog/httpd/htdocs”

<Directory "/home/sctemme/inst/blog/httpd/htdocs">
Options +Indexes
Require all granted
RewriteEngine on

RewriteCond "% {REQUEST_FILENAME}" "!-f"

RewriteCond "% {REQUEST_FILENAME}" "!-d"

RewriteRule "~ (.*)S" "/cgi-bin/blosxom.cgi/$1" [L, QSA]
</Directory>

RewriteLog "/home/sctemme/inst/blog/httpd/logs/rewrite_log"
RewriteLogLevel 9

ErrorLog "/home/sctemme/inst/blog/httpd/logs/error_log"

LogLevel debug

CustomLog "/home/sctemme/inst/blog/httpd/logs/access_log" common
ScriptAlias "/cgi-bin/" "/home/sctemme/inst/blog/bin/"
<Directory "/home/sctemme/inst/blog/bin">

362 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Options +ExecCGI
Require all granted
</Directory>
</VirtualHost>

The REWRITECOND and REWRITERULE directives say that, if the requested resource does not exist as a file or a
directory, its path is passed to the Blosxom CGI for rendering. Blosxom uses Path Info to specify blog entries and
index pages, so this means that if a particular path under Blosxom exists as a static file in the file system, the file is
served instead. Any request that isn’t pre- rendered is served by the CGI. This means that individual entries, which
show the comments, are always served by the CGI which in turn means that your comment spam is always visible.
This configuration also hides the Blosxom CGI from the user-visible URL in their Location bar. mod_rewrite is a
fantastically powerful and versatile module: investigate it to arrive at a configuration that is best for your situation.

Caching Content With mod_cache

The mod_cache module provides intelligent caching of HTTP responses: it is aware of the expiration timing and
content requirements that are part of the HTTP specification. The mod_cache module caches URL response content. If
content sent to the client is considered cacheable, it is saved to disk. Subsequent requests for that URL will be served
directly from the cache. The provider module for mod_cache, mod_disk_cache, determines how the cached content
is stored on disk. Most server systems will have more disk available than memory, and it’s good to note that some
operating system kernels cache frequently accessed disk content transparently in memory, so replicating this in the
server is not very useful.

To enable efficient content caching and avoid presenting the user with stale or invalid content, the application that gen-
erates the actual content has to send the correct response headers. Without headers like Etag:, Last-Modified:
or Expires:, MOD_CACHE can not make the right decision on whether to cache the content, serve it from cache
or leave it alone. When testing content caching, you may find that you need to modify your application or, if this is
impossible, selectively disable caching for URLs that cause problems. The mod_cache modules are not compiled by
default, but can be enabled by passing the option ——enable-cache [=shared] to the configure script. If you
use a binary distribution of Apache httpd, or it came with your port or package collection, it may have MOD_CACHE
already included.

Example: wiki.apache.org

The Apache Software Foundation Wiki is served by MoinMoin. MoinMoin is written in Python and runs as a CGI. To
date, any attempts to run it under mod_python has been unsuccessful. The CGI proved to place an untenably high load
on the server machine, especially when the Wiki was being indexed by search engines like Google. To lighten the load
on the server machine, the Apache Infrastructure team turned to mod_cache. It turned out MoinMoin needed a small
patch to ensure proper behavior behind the caching server: certain requests can never be cached and the corresponding
Python modules were patched to send the proper HTTP response headers. After this modification, the cache in front
of the Wiki was enabled with the following configuration snippet in httpd. conf:

CacheRoot /raidl/cacheroot

CacheEnable disk /

A page modified 100 minutes ago will expire in 10 minutes
CachelastModifiedFactor .1

Always check again after 6 hours

CacheMaxExpire 21600

This configuration will try to cache any and all content within its virtual host. It will never cache content for more
than six hours (the CACHEMAXEXPIRE directive). If no Expires: header is present in the response, MOD_CACHE

9.3. PERFORMANCE SCALING 363

will compute an expiration period from the Last-Modified: header. The computation using CACHELASTMOD-
IFIEDFACTOR is based on the assumption that if a page was recently modified, it is likely to change again in the near
future and will have to be re-cached.

Do note that it can pay off to disable the ETag: header: For files smaller than 1k the server has to calculate the
checksum (usually MDS5) and then send outa 304 Not Modified response, which will use up some CPU and still
saturate the same amount of network resources for the transfer (one TCP packet). For resources larger than 1k it might
prove CPU expensive to calculate the header for each request. Unfortunately there does currently not exist a way to
cache these headers.

<FilesMatch "\. (Jpe?glpnglgif|js|css|x?html|xml) ">
FileETag None
</FilesMatch>

This will disable the generation of the ETag: header for most static resources. The server does not calculate these
headers for dynamic resources.

Further Considerations

Armed with the knowledge of how to tune a sytem to deliver the desired the performance, we will soon discover that
one system might prove a bottleneck. How to make a system fit for growth, or how to put a number of systems into
tune will be discussed in PerformanceScalingOut’.

“http://wiki.apache.org/httpd/PerformanceScalingOut

http://wiki.apache.org/httpd/PerformanceScalingOut

364 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION
9.4 Security Tips

Some hints and tips on security issues in setting up a web server. Some of the suggestions will be general, others
specific to Apache.

Keep up to Date

The Apache HTTP Server has a good record for security and a developer community highly concerned about security
issues. But it is inevitable that some problems — small or large — will be discovered in software after it is released. For
this reason, it is crucial to keep aware of updates to the software. If you have obtained your version of the HTTP Server
directly from Apache, we highly recommend you subscribe to the Apache HTTP Server Announcements List'” where
you can keep informed of new releases and security updates. Similar services are available from most third-party
distributors of Apache software.

Of course, most times that a web server is compromised, it is not because of problems in the HTTP Server code.
Rather, it comes from problems in add-on code, CGI scripts, or the underlying Operating System. You must therefore
stay aware of problems and updates with all the software on your system.

Denial of Service (DoS) attacks

All network servers can be subject to denial of service attacks that attempt to prevent responses to clients by tying up
the resources of the server. It is not possible to prevent such attacks entirely, but you can do certain things to mitigate
the problems that they create.

Often the most effective anti-DoS tool will be a firewall or other operating-system configurations. For example, most
firewalls can be configured to restrict the number of simultaneous connections from any individual IP address or
network, thus preventing a range of simple attacks. Of course this is no help against Distributed Denial of Service
attacks (DDoS).

There are also certain Apache HTTP Server configuration settings that can help mitigate problems:

e The REQUESTREADTIMEOUT directive allows to limit the time a client may take to send the request.

e The TIMEOUT directive should be lowered on sites that are subject to DoS attacks. Setting this to as low as a
few seconds may be appropriate. As TIMEOUT is currently used for several different operations, setting it to a
low value introduces problems with long running CGI scripts.

e The KEEPALIVETIMEOUT directive may be also lowered on sites that are subject to DoS attacks. Some sites
even turn off the keepalives completely via KEEPALIVE, which has of course other drawbacks on performance.

e The values of various timeout-related directives provided by other modules should be checked.

e The directives LIMITREQUESTBODY, LIMITREQUESTFIELDS, LIMITREQUESTFIELDSIZE, LIMITREQUEST-
LINE, and LIMITXMLREQUESTBODY should be carefully configured to limit resource consumption triggered
by client input.

e On operating systems that support it, make sure that you use the ACCEPTFILTER directive to offload part of
the request processing to the operating system. This is active by default in Apache httpd, but may require
reconfiguration of your kernel.

e Tune the MAXREQUESTWORKERS directive to allow the server to handle the maximum number of simulta-
neous connections without running out of resources. See also the performance tuning documentation (p. 339)

10http://httpd.apache.org/lists.html#http-announce

http://httpd.apache.org/lists.html#http-announce

9.4. SECURITY TIPS 365

e The use of a threaded mpm (p. 90) may allow you to handle more simultaneous connections, thereby mitigating
DoS attacks. Further, the EVENT mpm uses asynchronous processing to avoid devoting a thread to each connec-
tion. Due to the nature of the OpenSSL library the EVENT mpm is currently incompatible with MOD_SSL and
other input filters. In these cases it falls back to the behaviour of the WORKER mpm.

e There are a number of third-party modules available through http://modules.apache.org/ that can restrict certain
client behaviors and thereby mitigate DoS problems.

Permissions on ServerRoot Directories

In typical operation, Apache is started by the root user, and it switches to the user defined by the USER directive to
serve hits. As is the case with any command that root executes, you must take care that it is protected from modification
by non-root users. Not only must the files themselves be writeable only by root, but so must the directories, and parents
of all directories. For example, if you choose to place ServerRoot in /usr/local/apache then itis suggested that
you create that directory as root, with commands like these:

mkdir /usr/local/apache
cd /usr/local/apache
mkdir bin conf logs

chown 0 . bin conf logs
chgrp 0 . Dbin conf logs
chmod 755 . Dbin conf logs

It is assumed that /, /usr, and /usr/local are only modifiable by root. When you install the ht t pd executable,
you should ensure that it is similarly protected:

cp httpd /usr/local/apache/bin

chown 0 /usr/local/apache/bin/httpd
chgrp 0 /usr/local/apache/bin/httpd
chmod 511 /usr/local/apache/bin/httpd

You can create an htdocs subdirectory which is modifiable by other users — since root never executes any files out of
there, and shouldn’t be creating files in there.

If you allow non-root users to modify any files that root either executes or writes on then you open your system to
root compromises. For example, someone could replace the ht t pd binary so that the next time you start it, it will
execute some arbitrary code. If the logs directory is writeable (by a non-root user), someone could replace a log file
with a symlink to some other system file, and then root might overwrite that file with arbitrary data. If the log files
themselves are writeable (by a non-root user), then someone may be able to overwrite the log itself with bogus data.

Server Side Includes

Server Side Includes (SSI) present a server administrator with several potential security risks.

The first risk is the increased load on the server. All SSI-enabled files have to be parsed by Apache, whether or not
there are any SSI directives included within the files. While this load increase is minor, in a shared server environment
it can become significant.

SSI files also pose the same risks that are associated with CGI scripts in general. Using the exec cmd element,
SSI-enabled files can execute any CGI script or program under the permissions of the user and group Apache runs as,
as configured in httpd.conf.

There are ways to enhance the security of SSI files while still taking advantage of the benefits they provide.

366 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

To isolate the damage a wayward SSI file can cause, a server administrator can enable suexec (p. 115) as described in
the CGI in General section.

Enabling SSI for files with . html or . htm extensions can be dangerous. This is especially true in a shared, or high
traffic, server environment. SSI-enabled files should have a separate extension, such as the conventional .shtml.
This helps keep server load at a minimum and allows for easier management of risk.

Another solution is to disable the ability to run scripts and programs from SSI pages. To do this replace
Includes with IncludesNOEXEC in the OPTIONS directive. Note that users may still use <--#include
virtual="..." ——-> to execute CGI scripts if these scripts are in directories designated by a SCRIPTALIAS
directive.

CGI in General

First of all, you always have to remember that you must trust the writers of the CGI scripts/programs or your ability
to spot potential security holes in CGI, whether they were deliberate or accidental. CGI scripts can run essentially
arbitrary commands on your system with the permissions of the web server user and can therefore be extremely
dangerous if they are not carefully checked.

All the CGI scripts will run as the same user, so they have potential to conflict (accidentally or deliberately) with other
scripts e.g. User A hates User B, so he writes a script to trash User B’s CGI database. One program which can be used
to allow scripts to run as different users is SUEXEC (p. 115) which is included with Apache as of 1.2 and is called from
special hooks in the Apache server code. Another popular way of doing this is with CGIWrap'!.

Non Script Aliased CGI

Allowing users to execute CGI scripts in any directory should only be considered if:

e You trust your users not to write scripts which will deliberately or accidentally expose your system to an attack.
e You consider security at your site to be so feeble in other areas, as to make one more potential hole irrelevant.

e You have no users, and nobody ever visits your server.

Script Aliased CGI

Limiting CGI to special directories gives the admin control over what goes into those directories. This is inevitably
more secure than non script aliased CGI, but only if users with write access to the directories are trusted or the admin
is willing to test each new CGI script/program for potential security holes.

Most sites choose this option over the non script aliased CGI approach.

Other sources of dynamic content

Embedded scripting options which run as part of the server itself, such as mod_php, mod_perl, mod_tcl, and
mod_python, run under the identity of the server itself (see the USER directive), and therefore scripts executed by
these engines potentially can access anything the server user can. Some scripting engines may provide restrictions, but
it is better to be safe and assume not.

hittp://cgiwrap.sourceforge.net/

http://cgiwrap.sourceforge.net/

9.4. SECURITY TIPS 367

Dynamic content security

When setting up dynamic content, such as mod_php, mod_perl or mod_python, many security considerations get
out of the scope of httpd itself, and you need to consult documentation from those modules. For example, PHP lets
you setup Safe Mode'2, which is most usually disabled by default. Another example is Suhosin'3, a PHP addon for
more security. For more information about those, consult each project documentation.

At the Apache level, a module named mod_security'* can be seen as a HTTP firewall and, provided you configure it
finely enough, can help you enhance your dynamic content security.

Protecting System Settings
To run a really tight ship, you’ll want to stop users from setting up .htaccess files which can override security
features you’ve configured. Here’s one way to do it.
In the server configuration file, put
<Directory "/">
AllowOverride None
</Directory>
This prevents the use of . htaccess files in all directories apart from those specifically enabled.

Note that this setting is the default since Apache 2.3.9.

Protect Server Files by Default

One aspect of Apache which is occasionally misunderstood is the feature of default access. That is, unless you take
steps to change it, if the server can find its way to a file through normal URL mapping rules, it can serve it to clients.

For instance, consider the following example:

cd /; 1ln -s / public_html
Accessing http://localhost/ root/

This would allow clients to walk through the entire filesystem. To work around this, add the following block to your
server’s configuration:

<Directory "/">
Require all denied
</Directory>

This will forbid default access to filesystem locations. Add appropriate DIRECTORY blocks to allow access only in
those areas you wish. For example,

<Directory "/usr/users/*/public_html">
Require all granted

</Directory>

<Directory "/usr/local/httpd">
Require all granted

</Directory>

2http://www.php.net/manual/en/ini.sect.safe-mode.php
Bhttp://www.hardened-php.net/suhosin/
4http://modsecurity.org/

http://www.php.net/manual/en/ini.sect.safe-mode.php
http://www.hardened-php.net/suhosin/
http://modsecurity.org/

368 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Pay particular attention to the interactions of LOCATION and DIRECTORY directives; for instance, even if
<Directory "/"> deniesaccess,a <Location "/"> directive might overturn it.

Also be wary of playing games with the USERDIR directive; setting it to something like ./ would have the same
effect, for root, as the first example above. We strongly recommend that you include the following line in your server
configuration files:

UserDir disabled root

Watching Your Logs

To keep up-to-date with what is actually going on against your server you have to check the Log Files (p. 56) . Even
though the log files only reports what has already happened, they will give you some understanding of what attacks is
thrown against the server and allow you to check if the necessary level of security is present.

A couple of examples:

grep -c "/Jjsp/source.jsp?/jsp/ /Jjsp/source.jsp??" access_log
grep "client denied" error_log | tail -n 10

The first example will list the number of attacks trying to exploit the Apache Tomcat Source.JSP Malformed Request
Information Disclosure Vulnerability'3, the second example will list the ten last denied clients, for example:

[Thu Jul 11 17:18:39 2002] [error] [client foo.example.com] client
denied by server configuration: /usr/local/apache/htdocs/.htpasswd

As you can see, the log files only report what already has happened, so if the client had been able to access the
.htpasswd file you would have seen something similar to:

foo.example.com - - [12/Jul/2002:01:59:13 +0200] "GET /.htpasswd
HTTP/1.1"

in your Access Log (p. 56) . This means you probably commented out the following in your server configuration file:

<Files ".htx">
Require all denied
</Files>

Merging of configuration sections

The merging of configuration sections is complicated and sometimes directive specific. Always test your changes
when creating dependencies on how directives are merged.

For modules that don’t implement any merging logic, such as MOD_ACCESS_COMPAT, the behavior in later sections
depends on whether the later section has any directives from the module. The configuration is inherited until a change
is made, at which point the configuration is replaced and not merged.

5http://online.securityfocus.com/bid/4876/info/

http://online.securityfocus.com/bid/4876/info/

9.5. RELEVANT STANDARDS 369
9.5 Relevant Standards

This page documents all the relevant standards that the Apache HTTP Server follows, along with brief descriptions.

In addition to the information listed below, the following resources should be consulted:

e http://purl.org/NET/http-errata'® - HTTP/1.1 Specification Errata
e http://www.rfc-editor.org/errata.php'” - RFC Errata
e http:/ftp.ics.uci.edu/pub/ietf/http/#RFC'® - A pre-compiled list of HTTP related RFCs

m Notice

This document is not yet complete.

HTTP Recommendations

Regardless of what modules are compiled and used, Apache as a basic web server complies with the following IETF
recommendations:

RFC 1945'° (Informational) The Hypertext Transfer Protocol (HTTP) is an application-level protocol with the light-
ness and speed necessary for distributed, collaborative, hypermedia information systems. This documents
HTTP/1.0.

RFC 2616°° (Standards Track) The Hypertext Transfer Protocol (HTTP) is an application-level protocol for dis-
tributed, collaborative, hypermedia information systems. This documents HTTP/1.1.

RFC 2396°! (Standards Track) A Uniform Resource Identifier (URI) is a compact string of characters for identify-
ing an abstract or physical resource.

RFC 4346% (Standards Track) The TLS protocol provides communications security over the Internet. It provides
encryption, and is designed to prevent eavesdropping, tampering, and message forgery.

HTML Recommendations

Regarding the Hypertext Markup Language, Apache complies with the following IETF and W3C recommendations:

RFC 2854% (Informational) This document summarizes the history of HTML development, and defines the
"text/html" MIME type by pointing to the relevant W3C recommendations.

HTML 4.01 Specification’* (Errata®®) This specification defines the HyperText Markup Language (HTML), the
publishing language of the World Wide Web. This specification defines HTML 4.01, which is a subversion of
HTML 4.

HTML 3.2 Reference Specification’® The HyperText Markup Language (HTML) is a simple markup language used
to create hypertext documents that are portable from one platform to another. HTML documents are SGML
documents.

XHTML 1.1 - Module-based XHTML?’ (Errata®®) This Recommendation defines a new XHTML document type
that is based upon the module framework and modules defined in Modularization of XHTML.

16http://purl.org/NET/http-errata
Thttp://www.rfc-editor.org/errata.php
8http://ftp.ics.uci.edu/pub/ietf/http/#RFC

http://purl.org/NET/http-errata
http://www.rfc-editor.org/errata.php
http://ftp.ics.uci.edu/pub/ietf/http/#RFC

370 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

XHTML 1.0 The Extensible HyperText Markup Language (Second Edition)* (Errata®’) This specification de-
fines the Second Edition of XHTML 1.0, a reformulation of HTML 4 as an XML 1.0 application, and three
DTDs corresponding to the ones defined by HTML 4.

Authentication

Concerning the different methods of authentication, Apache follows the following IETF recommendations:

RFC 26173 (Standards Track) "HTTP/1.0", includes the specification for a Basic Access Authentication scheme.

Language/Country Codes

The following links document ISO and other language and country code information:

ISO 639-2°2 ISO 639 provides two sets of language codes, one as a two-letter code set (639-1) and another as a
three-letter code set (this part of ISO 639) for the representation of names of languages.

ISO 3166-1* These pages document the country names (official short names in English) in alphabetical order as
given in ISO 3166-1 and the corresponding ISO 3166-1-alpha-2 code elements.

BCP 47°* (Best Current Practice), RFC 3066* This document describes a language tag for use in cases where it is
desired to indicate the language used in an information object, how to register values for use in this language
tag, and a construct for matching such language tags.

RFC 32823 (Standards Track) This document defines a "Content-language:" header, for use in cases where one
desires to indicate the language of something that has RFC 822-like headers, like MIME body parts or Web
documents, and an " Accept-Language:" header for use in cases where one wishes to indicate one’s preferences
with regard to language.

9.6. PASSWORD FORMATS 371
9.6 Password Formats

Notes about the password encryption formats generated and understood by Apache.

Basic Authentication

There are five formats that Apache recognizes for basic-authentication passwords. Note that not all formats work on
every platform:

berypt "$2y$" + the result of the crypt_blowfish algorithm. See the APR source file crypt_blowfish.c?’ for the details
of the algorithm.

MDS5 "$apr1$" + the result of an Apache-specific algorithm using an iterated (1,000 times) MD3 digest of various
combinations of a random 32-bit salt and the password. See the APR source file apr_md5.c*® for the details of
the algorithm.

SHA1 "{SHA}" + Base64-encoded SHA-1 digest of the password. Insecure.

CRYPT Unix only. Uses the traditional Unix crypt (3) function with a randomly-generated 32-bit salt (only 12
bits used) and the first 8 characters of the password. Insecure.

PLAIN TEXT (i.e. unencrypted) Windows & Netware only. Insecure.

Generating values with htpasswd

berypt
$ htpasswd -nbB myName myPassword
myName: $2y$05$c4WoMPo3SXsafkva.HHa6uXQZWr70boPiC2bT/r7qlBB8I2s0BRC

MD5

$ htpasswd -nbm myName myPassword

myName: $Saprl$r3l..... SHqJZimcKQFAMYayBlzkrA/
SHA1

$ htpasswd -nbs myName myPassword
myName : {SHA}VBPuJHI7uixaabLQGWx4s+5GKNE=

CRYPT
$ htpasswd -nbd myName myPassword
myName : rgXexS6ZhobKA

3Thttp://svn.apache.org/viewvc/apr/apr/trunk/crypto/crypt_blowfish.c?view=markup
38http://svn.apache.org/viewvc/apr/apr/trunk/crypto/apr_md5.c?view=markup

http://svn.apache.org/viewvc/apr/apr/trunk/crypto/crypt_blowfish.c?view=markup
http://svn.apache.org/viewvc/apr/apr/trunk/crypto/apr_md5.c?view=markup

372 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Generating CRYPT and MDS values with the OpenSSL command-line program

OpenSSL knows the Apache-specific MD5 algorithm.

MD5

$ openssl passwd —aprl myPassword
SaprlS$gHDFfhPCSNnITSVHgYLDAKIYOacGRNYO

CRYPT

openssl passwd —-crypt myPassword
gQ5vTYO3c8dsU

Validating CRYPT or MDS5 passwords with the OpenSSL command line program

The salt for a CRYPT password is the first two characters (converted to a binary value). To validate myPassword
against rgXexS6ZhobKA

CRYPT

$ openssl passwd -crypt -salt rq myPassword
Warning: truncating password to 8 characters
rgXexS6ZhobKA

Note that using myPasswo instead of myPassword will produce the same result because only the first 8 characters
of CRYPT passwords are considered.

The salt for an MD5 password is between $aprl$ and the following $ (as a Base64-encoded binary value - max 8

chars). To validate myPassword against $aprl1S$r31... .. SHgJZimcKQFAMYayBlzkrA/
MDS5
$ openssl passwd -aprl -salt r3l..... myPassword
Saprl$r3l..... SHQJZimcKQFAMYayBlzkrA/

Database password fields for mod_dbd

The SHA1 variant is probably the most useful format for DBD authentication. Since the SHA1 and Base64 functions
are commonly available, other software can populate a database with encrypted passwords that are usable by Apache
basic authentication.

To create Apache SHA 1-variant basic-authentication passwords in various languages:

PHP

"{SHA}’" . Dbase64_encode (shal ($password, TRUE))

Java

"{SHA}" + new
sun.misc.BASE64Encoder () .encode (java.security.MessageDigest.getInstance ("SHAL")

.digest (passw

9.6. PASSWORD FORMATS

ColdFusion
"{SHA}" & ToBase64 (BinaryDecode (Hash (password, "SHA1"), "Hex"))

Ruby

require ’digest/shal’

require ’'base64’

’{SHA}’ + Baseb64.encode64 (Digest::SHAl.digest (password))

Cor C++
Use the APR function: apr-shal_base64

Python

import base6c4

import hashlib

"{SHA}" + format (baseb64.b64encode (hashlib.shal (password) .digest ()))

PostgreSQL (with the contrib/pgcrypto functions installed)
"{SHA}’ | |encode (digest (password, ' shal’),’base64’)

Digest Authentication

Apache

recognizes one format for digest-authentication passwords - the MDS5 hash of the
user:realm:password as a 32-character string of hexadecimal digits.

Realm argument to the AUTHNAME directive in httpd.conf.

Database password fields for mod_dbd

373

string

realm is the Authorization

Since the MD5 function is commonly available, other software can populate a database with encrypted passwords that
are usable by Apache digest authentication.

To create Apache digest-authentication passwords in various languages:

PHP

md5 ($user . ' :f . Srealm . ':/ .$password)

Java

byte b[] = java.security.MessageDigest.getInstance ("MD5") .digest (
(user + ":" + realm + ":" + password).getBytes());

java.math.BigInteger bi = new Jjava.math.BigInteger(l, Db);
String s = bi.toString(16);
while (s.length() < 32)

s = "0" + s;

// String s is the encrypted password

374

CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

ColdFusion
LCase (Hash (

(user & ":" & realm & ":" & password)

"MD5"))

Ruby

require ’'digest/md5’

Digest::MD5.hexdigest (user + ’:

14

+ realm + 7 :/

+ password)

PostgreSQL (with the contrib/pgcrypto functions installed)

encode (digest (user || ’:’ |
"hex')

realm || " :’

|| password ,

"md5"),

Chapter 10

Apache modules

375

376 CHAPTER 10. APACHE MODULES
10.1 Terms Used to Describe Modules

This document describes the terms that are used to describe each Apache module (p. 1101) .

Description

A brief description of the purpose of the module.

Status

This indicates how tightly bound into the Apache Web server the module is; in other words, you may need to recompile
the server in order to gain access to the module and its functionality. Possible values for this attribute are:

MPM A module with status "MPM" is a Multi-Processing Module (p. 90) . Unlike the other types of modules,
Apache must have one and only one MPM in use at any time. This type of module is responsible for basic
request handling and dispatching.

Base A module labeled as having "Base" status is compiled and loaded into the server by default, and is therefore
normally available unless you have taken steps to remove the module from your configuration.

Extension A module with "Extension" status is not normally compiled and loaded into the server. To enable the
module and its functionality, you may need to change the server build configuration files and re-compile Apache.

Experimental "Experimental" status indicates that the module is available as part of the Apache kit, but you are
on your own if you try to use it. The module is being documented for completeness, and is not necessarily
supported.

External Modules which are not included with the base Apache distribution ("third-party modules") may use the
"External" status. We are not responsible for, nor do we support such modules.

Source File

This quite simply lists the name of the source file which contains the code for the module. This is also the name used
by the <IFMODULE> directive.

Module Identifier

This is a string which identifies the module for use in the LOADMODULE directive when dynamically loading modules.
In particular, it is the name of the external variable of type module in the source file.

Compatibility

If the module was not part of the original Apache version 2 distribution, the version in which it was introduced should
be listed here. In addition, if the module is limited to particular platforms, the details will be listed here.

10.2. TERMS USED TO DESCRIBE DIRECTIVES 377
10.2 Terms Used to Describe Directives

This document describes the terms that are used to describe each Apache configuration directive (p. 1106) .

See also

e Configuration files (p. 32)

Description

A brief description of the purpose of the directive.

Syntax

This indicates the format of the directive as it would appear in a configuration file. This syntax is extremely directive-
specific, and is described in detail in the directive’s definition. Generally, the directive name is followed by a series
of one or more space-separated arguments. If an argument contains a space, the argument must be enclosed in double
quotes. Optional arguments are enclosed in square brackets. Where an argument can take on more than one possible
value, the possible values are separated by vertical bars "—". Literal text is presented in the default font, while
argument-types for which substitution is necessary are emphasized. Directives which can take a variable number of
arguments will end in "..." indicating that the last argument is repeated.

Directives use a great number of different argument types. A few common ones are defined below.

URL A complete Uniform Resource Locator including a scheme, hostname, and optional pathname as in
http://www.example.com/path/to/file.html

URL-path The part of a url which follows the scheme and hostname as in /path/to/file.html. The url-path
represents a web-view of a resource, as opposed to a file-system view.

file-path The path to a file in the local file-system beginning with the root directory as in
/usr/local/apache/htdocs/path/to/file.html. Unless otherwise specified, a file-path which
does not begin with a slash will be treated as relative to the ServerRoot (p. 380) .

directory-path The path to a directory in the local file-system beginning with the root directory as in
/usr/local/apache/htdocs/path/to/.

filename The name of a file with no accompanying path information as in file.html.
regex A Perl-compatible regular expression. The directive definition will specify what the regex is matching against.

extension In general, this is the part of the filename which follows the last dot. However, Apache recognizes multiple
filename extensions, so if a filename contains more than one dot, each dot-separated part of the filename follow-
ing the first dot is an extension. For example, the filename £ile.html.en contains two extensions: .html
and .en. For Apache directives, you may specify extensions with or without the leading dot. In addition,
extensions are not case sensitive.

MIME-type A method of describing the format of a file which consists of a major format type and a minor format
type, separated by a slash as in text /html.

env-variable The name of an environment variable (p. 92) defined in the Apache configuration process. Note this is not
necessarily the same as an operating system environment variable. See the environment variable documentation
(p- 92) for more details.

378 CHAPTER 10. APACHE MODULES

Default

If the directive has a default value (i.e., if you omit it from your configuration entirely, the Apache Web server will
behave as though you set it to a particular value), it is described here. If there is no default value, this section should
say "None". Note that the default listed here is not necessarily the same as the value the directive takes in the default
httpd.conf distributed with the server.

Context

This indicates where in the server’s configuration files the directive is legal. It’s a comma-separated list of one or more
of the following values:

server config This means that the directive may be used in the server configuration files (e.g., httpd.conf), but
not within any < VIRTUALHOST> or <DIRECTORY> containers. It is not allowed in . htaccess files at all.

virtual host This context means that the directive may appear inside <VIRTUALHOST> containers in the server
configuration files.

directory A directive marked as being valid in this context may be used inside <DIRECTORY>, <LOCATION>,
<FILES>, <IF>, and <PROXY> containers in the server configuration files, subject to the restrictions outlined
in Configuration Sections (p. 35) .

.htaccess If a directive is valid in this context, it means that it can appear inside per-directory . htaccess files. It
may not be processed, though depending upon the overrides currently active.

The directive is only allowed within the designated context; if you try to use it elsewhere, you’ll get a configuration
error that will either prevent the server from handling requests in that context correctly, or will keep the server from
operating at all — i.e., the server won’t even start.

The valid locations for the directive are actually the result of a Boolean OR of all of the listed contexts. In other words,
a directive that is marked as being valid in "server config, .htaccess" can be usedin the httpd.conf
file and in . htaccess files, but not within any <DIRECTORY > or <VIRTUALHOST>> containers.

Override

This directive attribute indicates which configuration override must be active in order for the directive to be processed
when it appears in a . htaccess file. If the directive’s context doesn’t permit it to appear in . htaccess files, then
no context will be listed.

Overrides are activated by the ALLOWOVERRIDE directive, and apply to a particular scope (such as a directory) and
all descendants, unless further modified by other ALLOWOVERRIDE directives at lower levels. The documentation for
that directive also lists the possible override names available.

Status

This indicates how tightly bound into the Apache Web server the directive is; in other words, you may need to recom-
pile the server with an enhanced set of modules in order to gain access to the directive and its functionality. Possible
values for this attribute are:

Core If a directive is listed as having "Core" status, that means it is part of the innermost portions of the Apache Web
server, and is always available.

10.2. TERMS USED TO DESCRIBE DIRECTIVES 379

MPM A directive labeled as having "MPM" status is provided by a Multi-Processing Module (p. 90) . This type of
directive will be available if and only if you are using one of the MPMs listed on the Module line of the directive
definition.

Base A directive labeled as having "Base" status is supported by one of the standard Apache modules which is
compiled into the server by default, and is therefore normally available unless you’ve taken steps to remove the
module from your configuration.

Extension A directive with "Extension" status is provided by one of the modules included with the Apache server
kit, but the module isn’t normally compiled into the server. To enable the directive and its functionality, you will
need to change the server build configuration files and re-compile Apache.

Experimental "Experimental" status indicates that the directive is available as part of the Apache kit, but you're
on your own if you try to use it. The directive is being documented for completeness, and is not necessarily
supported. The module which provides the directive may or may not be compiled in by default; check the top
of the page which describes the directive and its module to see if it remarks on the availability.

Module

This quite simply lists the name of the source module which defines the directive.

Compatibility

If the directive wasn’t part of the original Apache version 2 distribution, the version in which it was introduced should
be listed here. In addition, if the directive is available only on certain platforms, it will be noted here.

380

10.3 Apache Module core

CHAPTER 10. APACHE MODULES

Description:

Status: Core

Core Apache HTTP Server features that are always available

Directives

AcceptFilter
AcceptPathInfo
AccessFileName
AddDefaultCharset

AllowEncodedSlashes

AllowOverride
AllowOverrideList
AsyncFilter
CGIMapExtension
CGIPassAuth
CGIVar
ContentDigest
DefaultRuntimeDir
DefaultType
Define
<Directory >
<DirectoryMatch>
DocumentRoot
<Else>

<Elself>
EnableMMAP
EnableSendfile
Error
ErrorDocument
ErrorLog
ErrorLogFormat
ExtendedStatus
FileETag

<Files>
<FilesMatch>
ForceType
GprofDir
HostnameL.ookups
<If>

<IfDefine>

10.3.

APACHE MODULE CORE

<IfModule>

Include
IncludeOptional
KeepAlive
KeepAliveTimeout
<Limit>
<LimitExcept>
LimitInternalRecursion
LimitRequestBody
LimitRequestFields
LimitRequestFieldSize
LimitRequestLine
LimitXMLRequestBody
<Location>
<LocationMatch>
LoglLevel
LogLevelOverride
MaxKeepAliveRequests
MaxRangeOverlaps
MaxRangeReversals
MaxRanges
MergeTrailers

Mutex
NameVirtualHost
Options

Protocol

Protocols
ProtocolsHonorOrder
QualifyRedirectURL
RegisterHttpMethod
RLimitCPU
RLimitMEM
RLimitNPROC
ScriptInterpreterSource
SeeRequestTail
ServerAdmin
ServerAlias
ServerName
ServerPath

ServerRoot

ServerSignature

381

382 CHAPTER 10. APACHE MODULES

e ServerTokens

e SetHandler

e SetlnputFilter

e SetOutputFilter

e TimeOut

e TraceEnable

e UnDefine

e UseCanonicalName

e UseCanonicalPhysicalPort
e <VirtualHost>

e Warning

AcceptFilter Directive

Description: Configures optimizations for a Protocol’s Listener Sockets

Syntax: AcceptFilter protocol accept_filter
Context: server config

Status: Core

Module: core

This directive enables operating system specific optimizations for a listening socket by the PROTOCOL type. The basic
premise is for the kernel to not send a socket to the server process until either data is received or an entire HTTP
Request is buffered. Only FreeBSD’s Accept Filters', Linux’s more primitive TCP_DEFER_ACCEPT, and Windows’
optimized AcceptEx() are currently supported.

Using none for an argument will disable any accept filters for that protocol. This is useful for protocols that require a
server send data first, such as ftp: or nntp:

AcceptFilter nntp none

The default protocol names are https for port 443 and http for all other ports. To specify that another protocol is
being used with a listening port, add the protocol argument to the LISTEN directive.

The default values on FreeBSD are:

AcceptFilter http httpready
AcceptFilter https dataready

The httpready accept filter buffers entire HTTP requests at the kernel level. Once an entire request is received, the
kernel then sends it to the server. See the

accf_http(9)> man page for more details. Since HTTPS requests are encrypted, only the accf_data(9)? filter is used.

The default values on Linux are:

AcceptFilter http data
AcceptFilter https data

Uhttp://www.freebsd.org/cgi/man.cgi?query=accept_filter&sektion=9
Zhttp://www.freebsd.org/cgi/man.cgi?query=accf_http&sektion=9
3http://www.freebsd.org/cgi/man.cgi?query=accf_data&sektion=9

http://www.freebsd.org/cgi/man.cgi?query=accept_filter&sektion=9
http://www.freebsd.org/cgi/man.cgi?query=accf_http&sektion=9
http://www.freebsd.org/cgi/man.cgi?query=accf_data&sektion=9

10.3. APACHE MODULE CORE 383

Linux’s TCP_DEFER_ACCEPT does not support buffering http requests. Any value besides none will enable
TCP_DEFER_ACCEPT on that listener. For more details see the Linux
tcp(7)* man page.

The default values on Windows are:

AcceptFilter http data
AcceptFilter https data

Window’s mpm_winnt interprets the AcceptFilter to toggle the AcceptEx() API, and does not support http protocol
buffering. There are two values which utilize the Windows AcceptEx() API and will recycle network sockets between
connections. data waits until data has been transmitted as documented above, and the initial data buffer and network
endpoint addresses are all retrieved from the single AcceptEx() invocation. connect will use the AcceptEx() API,
also retrieve the network endpoint addresses, but like none the connect option does not wait for the initial data
transmission.

On Windows, none uses accept() rather than AcceptEx() and will not recycle sockets between connections. This is
useful for network adapters with broken driver support, as well as some virtual network providers such as vpn drivers,
or spam, virus or spyware filters.

See also

e PROTOCOL

AcceptPathInfo Directive

Description: Resources accept trailing pathname information

Syntax: AcceptPathInfo On|Off|Default
Default: AcceptPathInfo Default

Context: server config, virtual host, directory, .htaccess
Override: Filelnfo

Status: Core

Module: core

This directive controls whether requests that contain trailing pathname information that follows an actual filename (or
non-existent file in an existing directory) will be accepted or rejected. The trailing pathname information can be made
available to scripts in the PATH_INFO environment variable.

For example, assume the location /test/ points to a directory that contains only the single file here.html.
Then requests for /test/here.html/more and /test/nothere.html/more both collect /more as
PATH_INFO.

The three possible arguments for the ACCEPTPATHINFO directive are:

Off A request will only be accepted if it maps to a literal path that exists. Therefore a request with trailing pathname
information after the true filename such as /test /here.html/more in the above example will return a 404
NOT FOUND error.

On A request will be accepted if a leading path component maps to a file that exists. The above example
/test/here.html/more will be accepted if /test/here.html maps to a valid file.

Default The treatment of requests with trailing pathname information is determined by the handler (p. 108) respon-
sible for the request. The core handler for normal files defaults to rejecting PATH_INFO requests. Handlers that
serve scripts, such as cgi-script (p. 580) and isapi-handler (p. 683) , generally accept PATH_INFO by default.

“http://homepages.cwi.nl/"aeb/linux/man2html/man7/tcp.7.html

http://homepages.cwi.nl/~aeb/linux/man2html/man7/tcp.7.html

384 CHAPTER 10. APACHE MODULES

The primary purpose of the AcceptPathInfo directive is to allow you to override the handler’s choice of accepting
or rejecting PATH_INFO. This override is required, for example, when you use a filter (p. 110) , such as INCLUDES
(p. 667) , to generate content based on PATH_INFO. The core handler would usually reject the request, so you can use
the following configuration to enable such a script:

<Files "mypaths.shtml">
Options +Includes
SetOutputFilter INCLUDES
AcceptPathInfo On
</Files>

AccessFileName Directive

Description: Name of the distributed configuration file

Syntax: AccessFileName filename [filename]
Default: AccessFileName .htaccess

Context: server config, virtual host

Status: Core

Module: core

While processing a request, the server looks for the first existing configuration file from this list of names in every
directory of the path to the document, if distributed configuration files are enabled for that directory. For example:

AccessFileName .acl

Before returning the document /usr/local/web/index.html, the server will read /.acl, /usr/.acl,
/usr/local/.acl and /usr/local/web/.acl for directives unless they have been disabled with:

<Directory "/">
AllowOverride None
</Directory>

See also

e ALLOWOVERRIDE
e Configuration Files (p. 32)
e _.htaccess Files (p. 249)

AddDefaultCharset Directive

Description: Default charset parameter to be added when a response content-type is text/plain or

text/html
Syntax: AddDefaultCharset On|Off|charset
Default: AddDefaultCharset Off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

This directive specifies a default value for the media type charset parameter (the name of a character encoding) to be
added to a response if and only if the response’s content-type is either text /plain or text/html. This should
override any charset specified in the body of the response via a META element, though the exact behavior is often

10.3. APACHE MODULE CORE 385

dependent on the user’s client configuration. A setting of AddDefaultCharset Off disables this functionality.
AddDefaultCharset On enablesadefault charset of iso—8859-1. Any other value is assumed to be the charset
to be used, which should be one of the IANA registered charset values® for use in Internet media types (MIME types).
For example:

AddDefaultCharset utf-8

ADDDEFAULTCHARSET should only be used when all of the text resources to which it applies are known to be in that
character encoding and it is too inconvenient to label their charset individually. One such example is to add the charset
parameter to resources containing generated content, such as legacy CGI scripts, that might be vulnerable to cross-site
scripting attacks due to user-provided data being included in the output. Note, however, that a better solution is to just
fix (or delete) those scripts, since setting a default charset does not protect users that have enabled the "auto-detect
character encoding" feature on their browser.

See also

e ADDCHARSET

AllowEncodedSlashes Directive

Description: Determines whether encoded path separators in URLs are allowed to be passed through
Syntax: AllowEncodedSlashes On|Off |NoDecode

Default: AllowEncodedSlashes Off

Context: server config, virtual host

Status: Core

Module: core

Compatibility: NoDecode option available in 2.3.12 and later.

The ALLOWENCODEDSLASHES directive allows URLs which contain encoded path separators ($2F for / and addi-
tionally %$5C for \ on accordant systems) to be used in the path info.

With the default value, Of £, such URLSs are refused with a 404 (Not found) error.
With the value On, such URLs are accepted, and encoded slashes are decoded like all other encoded characters.

With the value NoDecode, such URLs are accepted, but encoded slashes are not decoded but left in their encoded
state.

Turning ALLOWENCODEDSLASHES On is mostly useful when used in conjunction with PATH_INFO.

:> Note

If encoded slashes are needed in path info, use of NoDecode is strongly recommended as a
security measure. Allowing slashes to be decoded could potentially allow unsafe paths.

See also

e ACCEPTPATHINFO

Shttp://www.iana.org/assignments/character-sets

http://www.iana.org/assignments/character-sets

386 CHAPTER 10. APACHE MODULES

AllowOverride Directive

Description: Types of directives that are allowed in . htaccess files

Syntax: AllowOverride All|None|directive-type [directive-type]

Default: AllowOverride None (2.3.9 and later), AllowOverride All (2.3.8
and earlier)

Context: directory

Status: Core

Module: core

When the server finds an .htaccess file (as specified by ACCESSFILENAME), it needs to know which directives
declared in that file can override earlier configuration directives.

iOnly available in <Directory> sections
ALLOWOVERRIDE is valid only in <DIRECTORY > sections specified without regular expres-
sions, not in <LOCATION>, <DIRECTORYMATCH> or <FILES> sections.

When this directive is set to None and ALLOWOVERRIDELIST is set to None, .htaccess files are completely ignored.
In this case, the server will not even attempt to read . htaccess files in the filesystem.

When this directive is set to A1 1, then any directive which has the .htaccess Context (p. 377) is allowed in . htaccess
files.

The directive-type can be one of the following groupings of directives.

AuthConfig Allow use of the authorization directives (AUTHDBMGROUPFILE, AUTHDBMUSERFILE, AUTH-
GROUPFILE, AUTHNAME, AUTHTYPE, AUTHUSERFILE, REQUIRE, etc.).

FileInfo Allow use of the directives controlling document types (ERRORDOCUMENT, FORCETYPE, LAN-
GUAGEPRIORITY, SETHANDLER, SETINPUTFILTER, SETOUTPUTFILTER, and MOD_MIME Add* and Re-
move* directives), document meta data (HEADER, REQUESTHEADER, SETENVIF, SETENVIFNOCASE,
BROWSERMATCH, COOKIEEXPIRES, COOKIEDOMAIN, COOKIESTYLE, COOKIETRACKING, COOKIEN-
AME), MOD_REWRITE directives (REWRITEENGINE, REWRITEOPTIONS, REWRITEBASE, REWRITECOND,
REWRITERULE), MOD_ALIAS directives (REDIRECT, REDIRECTTEMP, REDIRECTPERMANENT, REDIRECT-
MATCH), and ACTION from MOD_ACTIONS.

Indexes Allow use of the directives controlling directory indexing (ADDDESCRIPTION, ADDICON, AD-
DICONBYENCODING, ADDICONBYTYPE, DEFAULTICON, DIRECTORYINDEX, FALLBACKRESOURCE,
FancyIndexing (p. 542) , HEADERNAME, INDEXIGNORE, INDEXOPTIONS, READMENAME, efc.).

Limit Allow use of the directives controlling host access (ALLOW, DENY and ORDER).

Nonfatal=[Override—Unknown—All] Allow use of AllowOverride option to treat invalid (unrecognized or disal-
lowed) directives in .htaccess as nonfatal. Instead of causing an Internal Server Error, disallowed or unrecog-
nised directives will be ignored and a warning logged:

e Nonfatal=Override treats directives forbidden by AllowOverride as nonfatal.

e Nonfatal=Unknown treats unknown directives as nonfatal. This covers typos and directives implemented
by a module that’s not present.

o Nonfatal=All treats both the above as nonfatal.

Note that a syntax error in a valid directive will still cause an Internal Server Error.

m Security

Nonfatal errors may have security implications for .htaccess users. For example, if AllowOver-
ride disallows AuthConfig, users’ configuration designed to restrict access to a site will be
disabled.

10.3. APACHE MODULE CORE 387

Options[=Option,...] Allow use of the directives controlling specific directory features (OPTIONS and XBITHACK).
An equal sign may be given followed by a comma-separated list, without spaces, of options that may be set
using the OPTIONS command.

:>Implicit disabling of Options
Even though the list of options that may be used in .htaccess files can be limited with this di-
rective, as long as any OPTIONS directive is allowed any other inherited option can be disabled
by using the non-relative syntax. In other words, this mechanism cannot force a specific option
to remain set while allowing any others to be set.

AllowOverride Options=Indexes,MultiViews

Example:
AllowOverride AuthConfig Indexes

In the example above, all directives that are neither in the group AuthConfig nor Indexes cause an internal server
error.

:>For security and performance reasons, do not set AllowOverride to anything other than
None in your <Directory "/"> block. Instead, find (or create) the <Directory>
block that refers to the directory where you’re actually planning to place a .htaccess file.

See also

e ACCESSFILENAME

e ALLOWOVERRIDELIST

e Configuration Files (p. 32)
e _htaccess Files (p. 249)

AllowOverrideList Directive

Description: Individual directives that are allowed in . htaccess files

Syntax: AllowOverrideList None|directive [directive-type]
Default: AllowOverrideList None

Context: directory

Status: Core

Module: core

When the server finds an . htaccess file (as specified by ACCESSFILENAME), it needs to know which directives
declared in that file can override earlier configuration directives.

iOnly available in <Directory> sections
ALLOWOVERRIDELIST is valid only in <DIRECTORY> sections specified without regular
expressions, not in <LOCATION>, <DIRECTORYMATCH> or <FILES>> sections.

When this directive is set to None and ALLOWOVERRIDE is set to None, then .htaccess files are completely ignored.
In this case, the server will not even attempt to read . htaccess files in the filesystem.

Example:

AllowOverride None
AllowOverrideList Redirect RedirectMatch

388 CHAPTER 10. APACHE MODULES

In the example above, only the Redirect and RedirectMatch directives are allowed. All others will cause an
Internal Server Error.

Example:

AllowOverride AuthConfig
AllowOverrideList CookieTracking CookieName

In the example above, ALLOWOVERRIDE grants permission to the AuthConfig directive grouping and AL-
LOWOVERRIDELIST grants permission to only two directives from the FileInfo directive grouping. All others
will cause an Internal Server Error.

See also

e ACCESSFILENAME

e ALLOWOVERRIDE

e Configuration Files (p. 32)
e .htaccess Files (p. 249)

AsyncFilter Directive

Description: Set the minimum filter type eligible for asynchronous handling
Syntax: AsyncFilter request|connection|network
Default: AsyncFilter request

Context: server config, virtual host

Status: Core

Module: core

Compatibility: ~ Only available from Apache 2.5.0 and later.

This directive controls the minimum filter levels that are eligible for asynchronous handling. This may be necessary
to support legacy external filters that did not handle meta buckets correctly.

If set to "network", asynchronous handling will be limited to the network filter only. If set to "connection", all
connection and network filters will be eligible for asynchronous handling, including MOD_SSL. If set to "request", all
filters will be eligible for asynchronous handling.

CGIMapExtension Directive

Description: Technique for locating the interpreter for CGI scripts
Syntax: CGIMapExtension cgi-path .extension
Context: directory, .htaccess

Override: FileInfo

Status: Core

Module: core

Compatibility: ~NetWare only

This directive is used to control how Apache httpd finds the interpreter used to run CGI scripts. For example, setting
CGIMapExtension sys:\foo.nlm .foo will cause all CGI script files with a . foo extension to be passed to
the FOO interpreter.

10.3. APACHE MODULE CORE 389

CGIPassAuth Directive

Description: Enables passing HTTP authorization headers to scripts as CGI variables
Syntax: CGIPassAuth On|Off

Default: CGIPassAuth Off

Context: directory, .htaccess

Override: AuthConfig

Status: Core

Module: core

Compatibility: ~ Available in Apache HTTP Server 2.4.13 and later

CGIPASSAUTH allows scripts access to HTTP authorization headers such as Authorization, which is required
for scripts that implement HTTP Basic authentication. Normally these HTTP headers are hidden from scripts. This
is to disallow scripts from seeing user ids and passwords used to access the server when HTTP Basic authentication
is enabled in the web server. This directive should be used when scripts are allowed to implement HTTP Basic
authentication.

This directive can be used instead of the compile-time setting SECURITY_HOLE_PASS_AUTHORIZATION which
has been available in previous versions of Apache HTTP Server.

The setting is respected by any modules which use ap_add_common_vars (), such as MOD_CGI, MOD_CGID,
MOD_PROXY_FCGI, MOD_PROXY_SCGI, and so on. Notably, it affects modules which don’t handle the request in the
usual sense but still use this API; examples of this are MOD_INCLUDE and MOD_EXT_FILTER. Third-party modules
that don’t use ap_add_common_vars () may choose to respect the setting as well.

CGIVar Directive
Description: Controls how some CGI variables are set
Syntax: CGIVar variable rule
Context: directory, .htaccess
Override: FileInfo
Status: Core
Module: core

Compatibility: Available in Apache HTTP Server 2.4.21 and later

This directive controls how some CGI variables are set.

REQUEST _URI rules:

original-uri (default) The value is taken from the original request line, and will not reflect internal redirects or
subrequests which change the requested resource.

current—uri The value reflects the resource currently being processed, which may be different than the original
request from the client due to internal redirects or subrequests.

ContentDigest Directive

Description: Enables the generation of Content-MD5 HTTP Response headers

Syntax: ContentDigest On|Off

Default: ContentDigest Off

Context: server config, virtual host, directory, .htaccess
Override: Options

Status: Core

Module: core

This directive enables the generation of Content-MD5 headers as defined in RFC1864 respectively RFC2616.

390 CHAPTER 10. APACHE MODULES

MDS5 is an algorithm for computing a "message digest" (sometimes called "fingerprint") of arbitrary-length data,
with a high degree of confidence that any alterations in the data will be reflected in alterations in the message digest.

The Content-MD5 header provides an end-to-end message integrity check (MIC) of the entity-body. A proxy or
client may check this header for detecting accidental modification of the entity-body in transit. Example header:

Content-MD5: AuLb7DplrgtRtxz2m9kRpA==

Note that this can cause performance problems on your server since the message digest is computed on every request
(the values are not cached).

Content-MDS5 is only sent for documents served by the CORE, and not by any module. For example, SSI documents,
output from CGI scripts, and byte range responses do not have this header.

DefaultRuntimeDir Directive

Description: Base directory for the server run-time files

Syntax: DefaultRuntimeDir directory-path

Default: DefaultRuntimeDir DEFAULT_REL_RUNTIMEDIR (logs/)
Context: server config

Status: Core

Module: core

Compatibility: ~ Available in Apache 2.4.2 and later

The DEFAULTRUNTIMEDIR directive sets the directory in which the server will create various run-time files (shared
memory, locks, etc.). If set as a relative path, the full path will be relative to SERVERROOT.

Example
DefaultRuntimeDir scratch/

The default location of DEFAULTRUNTIMEDIR may be modified by changing the DEFAULT_REL_RUNTIMEDIR
#define at build time.

Note: SERVERROOT should be specified before this directive is used. Otherwise, the default value of SERVERROOT
would be used to set the base directory.

See also

o the security tips (p. 364) for information on how to properly set permissions on the SERVERROOT

DefaultType Directive

Description: This directive has no effect other than to emit warnings if the value is not none. In prior
versions, DefaultType would specify a default media type to assign to response content for
which no other media type configuration could be found.

Syntax: DefaultType media-typel|none
Default: DefaultType none

Context: server config, virtual host, directory, .htaccess
Override: Filelnfo

Status: Core

Module: core

Compatibility: ~ All choices except none are DISABLED for 2.3.x and later.

This directive has been disabled. For backwards compatibility of configuration files, it may be specified with the value
none, meaning no default media type. For example:

10.3. APACHE MODULE CORE 391

DefaultType None

DefaultType None is only available in httpd-2.2.7 and later.

Use the mime.types configuration file and the ADDTYPE to configure media type assignments via file extensions,
or the FORCETYPE directive to configure the media type for specific resources. Otherwise, the server will send the
response without a Content-Type header field and the recipient may attempt to guess the media type.

Define Directive

Description: Define a variable

Syntax: Define parameter—-name [parameter-value]
Context: server config, virtual host

Status: Core

Module: core

In its one parameter form, DEFINE is equivalent to passing the —D argument to httpd. It can be used to toggle the
use of <IFDEFINE>> sections without needing to alter —D arguments in any startup scripts.

In addition to that, if the second parameter is given, a config variable is set to this value. The variable can be used in
the configuration using the ${VAR} syntax. The variable is always globally defined and not limited to the scope of the
surrounding config section.

<IfDefine TEST>
Define servername test.example.com
</IfDefine>
<IfDefine !TEST>
Define servername www.example.com
Define SSL
</IfDefine>

DocumentRoot "/var/www/${servername}/htdocs"

Variable names may not contain colon ":" characters, to avoid clashes with REWRITEMAP’s syntax.

While this directive is supported in virtual host context, the changes it makes are visible to any later configuration
directives, beyond any enclosing virtual host

Directory Directive

Description: Enclose a group of directives that apply only to the named file-system directory, sub-
directories, and their contents.

Syntax: <Directory directory-path> ... </Directory>
Context: server config, virtual host

Status: Core

Module: core

<DIRECTORY> and </Directory> are used to enclose a group of directives that will apply only to the named
directory, sub-directories of that directory, and the files within the respective directories. Any directive that is al-
lowed in a directory context may be used. Directory-path is either the full path to a directory, or a wild-card
string using Unix shell-style matching. In a wild-card string, ? matches any single character, and » matches
any sequences of characters. You may also use [] character ranges. None of the wildcards match a ‘/’ charac-
ter, so <Directory "/*/public_html"> will not match /home/user/public_html, but <Directory
"/home/*/public_html"> will match. Example:

392 CHAPTER 10. APACHE MODULES

<Directory "/usr/local/httpd/htdocs">
Options Indexes FollowSymLinks
</Directory>

Directory paths may be quoted, if you like, however, it must be quoted if the path contains spaces. This is because a
space would otherwise indicate the end of an argument.

:iBe careful with the directory-path arguments: They have to literally match the filesystem path
which Apache httpd uses to access the files. Directives applied to a particular <Directory>
will not apply to files accessed from that same directory via a different path, such as via differ-
ent symbolic links.

Regular expressions can also be used, with the addition of the ~ character. For example:

<Directory ~ """ /www/[0-9]{3}">

</Directory>

would match directories in /www/ that consisted of three numbers.

If multiple (non-regular expression) <DIRECTORY > sections match the directory (or one of its parents) containing a
document, then the directives are applied in the order of shortest match first, interspersed with the directives from the
.htaccess files. For example, with

<Directory "/">
AllowOverride None
</Directory>

<Directory "/home">
AllowOverride FileInfo
</Directory>

for access to the document /home /web/dir/doc.html the steps are:

e Apply directive Al lowOverride None (disabling . htaccess files).
e Apply directive AllowOverride FileInfo (for directory /home).

e Apply any FileInfo directives in /home/.htaccess, /home/web/.htaccess and
/home/web/dir/.htaccess in that order.

Regular expressions are not considered until after all of the normal sections have been applied. Then all of the regular
expressions are tested in the order they appeared in the configuration file. For example, with

<Directory ~ "abc$">
... directives here
</Directory>

the regular expression section won’t be considered until after all normal <DIRECTORY>s and . htaccess files have
been applied. Then the regular expression will match on /home/abc/public_html/abc and the corresponding
<DIRECTORY> will be applied.

Note that the default access for <Directory "/"> isto permit all access. This means that Apache httpd will
serve any file mapped from an URL. It is recommended that you change this with a block such as

10.3. APACHE MODULE CORE 393

<Directory "/">
Require all denied
</Directory>
and then override this for directories you want accessible. See the Security Tips (p. 364) page for more details.

The directory sections occur in the httpd. conf file. <DIRECTORY> directives cannot nest, and cannot appear in
a <LIMIT> or <LIMITEXCEPT> section.

See also

e How <Directory>, <Location> and <Files> sections work (p. 35) for an explanation of how these different
sections are combined when a request is received

DirectoryMatch Directive

Description: Enclose directives that apply to the contents of file-system directories matching a regular ex-

pression.
Syntax: <DirectoryMatch regex> ... </DirectoryMatch>
Context: server config, virtual host
Status: Core
Module: core

<DIRECTORYMATCH> and </DirectoryMatch> are used to enclose a group of directives which will apply
only to the named directory (and the files within), the same as <DIRECTORY>. However, it takes as an argument a
regular expression. For example:

<DirectoryMatch """ /www/ (.+/)2[0-9]{3}/">
#
</DirectoryMatch>

matches directories in /www/ (or any subdirectory thereof) that consist of three numbers.

:f> Compatability

Prior to 2.3.9, this directive implicitly applied to sub-directories (like <DIRECTORY>) and
could not match the end of line symbol ($). In 2.3.9 and later, only directories that match the
expression are affected by the enclosed directives.

> Trailing Slash

This directive applies to requests for directories that may or may not end in a trailing slash, so
expressions that are anchored to the end of line ($) must be written with care.

From 2.4.8 onwards, named groups and backreferences are captured and written to the environment with the corre-
sponding name prefixed with "MATCH_" and in upper case. This allows elements of paths to be referenced from
within expressions (p. 99) and modules like MOD_REWRITE. In order to prevent confusion, numbered (unnamed)
backreferences are ignored. Use named groups instead.

<DirectoryMatch """ /var/www/combined/ (?<sitename>["/]+)">
Require ldap-group cn=%{env:MATCH_SITENAME}, ou=combined, o=Example
</DirectoryMatch>

See also

e <DIRECTORY> for a description of how regular expressions are mixed in with normal <DIRECTORY >s

e How <Directory>, <Location> and <Files> sections work (p. 35) for an explanation of how these different
sections are combined when a request is received

394 CHAPTER 10. APACHE MODULES

DocumentRoot Directive

Description: Directory that forms the main document tree visible from the web

Syntax: DocumentRoot directory-path

Default: DocumentRoot /usr/local/apache/htdocs
Context: server config, virtual host

Status: Core

Module: core

This directive sets the directory from which httpd will serve files. Unless matched by a directive like ALIAS, the
server appends the path from the requested URL to the document root to make the path to the document. Example:

DocumentRoot "/usr/web"

then an access to http://my.example.com/index.html refers to /usr/web/index.html. If the
directory-path is not absolute then it is assumed to be relative to the SERVERROOT.

The DOCUMENTROOT should be specified without a trailing slash.

See also

e Mapping URLs to Filesystem Locations (p. 64)

Else Directive

Description: Contains directives that apply only if the condition of a previous <IF> or <ELSEIF> section
is not satisfied by a request at runtime

Syntax: <Else> ... </Else>

Context: server config, virtual host, directory, .htaccess
Override: All

Status: Core

Module: core

The <ELSE> applies the enclosed directives if and only if the most recent <IF> or <ELSEIF> section in the same
scope has not been applied. For example: In

<If "-z reqg(’Host’)">
¥ ..

</If>

<Else>
#

</Else>

The <IF> would match HTTP/1.0 requests without a Host: header and the <ELSE> would match requests with a
Host: header.

See also

o <IF>
e <ELSEIF>

e How <Directory>, <Location>, <Files> sections work (p. 35) for an explanation of how these different
sections are combined when a request is received. <IF>, <ELSEIF>, and <ELSE> are applied last.

10.3. APACHE MODULE CORE 395

Elself Directive

Description: Contains directives that apply only if a condition is satisfied by a request at runtime while the
condition of a previous <IF> or <ELSEIF> section is not satisfied

Syntax: <Elself expression> ... </ElselIf>
Context: server config, virtual host, directory, .htaccess
Override: All

Status: Core

Module: core

The <ELSEIF> applies the enclosed directives if and only if both the given condition evaluates to true and the most
recent <IF> or <ELSEIF> section in the same scope has not been applied. For example: In

<If "-R 710.1.0.0/16"">
#...

</If>

<ElseIf "-R 710.0.0.0/8"">
F.o..

</Elself>

<Else>
#...

</Else>

The <ELSEIF> would match if the remote address of a request belongs to the subnet 10.0.0.0/8 but not to the subnet
10.1.0.0/16.

See also

e Expressions in Apache HTTP Server (p. 99) , for a complete reference and more examples.
o <IF>
o <ELSE>

e How <Directory>, <Location>, <Files> sections work (p. 35) for an explanation of how these different
sections are combined when a request is received. <IF>, <ELSEIF>, and <ELSE> are applied last.

EnableMMAP Directive

Description: Use memory-mapping to read files during delivery

Syntax: EnableMMAP On|Off

Default: EnableMMAP On

Context: server config, virtual host, directory, .htaccess
Override: FileInfo

Status: Core

Module: core

This directive controls whether the ht t pd may use memory-mapping if it needs to read the contents of a file during
delivery. By default, when the handling of a request requires access to the data within a file — for example, when
delivering a server-parsed file using MOD_INCLUDE — Apache httpd memory-maps the file if the OS supports it.

This memory-mapping sometimes yields a performance improvement. But in some environments, it is better to disable
the memory-mapping to prevent operational problems:

e On some multiprocessor systems, memory-mapping can reduce the performance of the httpd.

e Deleting or truncating a file while ht t pd has it memory-mapped can cause ht t pd to crash with a segmentation
fault.

396 CHAPTER 10. APACHE MODULES

For server configurations that are vulnerable to these problems, you should disable memory-mapping of delivered files
by specifying:

EnableMMAP Off
For NFS mounted files, this feature may be disabled explicitly for the offending files by specifying:

<Directory "/path-to-nfs-files">
EnableMMAP Off
</Directory>

EnableSendfile Directive

Description: Use the kernel sendfile support to deliver files to the client
Syntax: EnableSendfile On|Off

Default: EnableSendfile Off

Context: server config, virtual host, directory, .htaccess

Override: Filelnfo

Status: Core

Module: core

Compatibility: ~ Default changed to Off in version 2.3.9.

This directive controls whether ht tpd may use the sendfile support from the kernel to transmit file contents to the
client. By default, when the handling of a request requires no access to the data within a file — for example, when
delivering a static file — Apache httpd uses sendfile to deliver the file contents without ever reading the file if the OS
supports it.

This sendfile mechanism avoids separate read and send operations, and buffer allocations. But on some platforms or
within some filesystems, it is better to disable this feature to avoid operational problems:

e Some platforms may have broken sendfile support that the build system did not detect, especially if the binaries
were built on another box and moved to such a machine with broken sendfile support.

e On Linux the use of sendfile triggers TCP-checksum offloading bugs on certain networking cards when using
IPv6.

e On Linux on Itanium, sendfile may be unable to handle files over 2GB in size.

e With a network-mounted DOCUMENTROOT (e.g., NFS, SMB, CIFS, FUSE), the kernel may be unable to serve
the network file through its own cache.
For server configurations that are not vulnerable to these problems, you may enable this feature by specifying:
EnableSendfile On

For network mounted files, this feature may be disabled explicitly for the offending files by specifying:

<Directory "/path-to-nfs-files">
EnableSendfile Off
</Directory>

Please note that the per-directory and .htaccess configuration of ENABLESENDFILE is not supported by
MOD_CACHE_DISK. Only global definition of ENABLESENDFILE is taken into account by the module.

10.3. APACHE MODULE CORE 397

Error Directive

Description: Abort configuration parsing with a custom error message
Syntax: Error message

Context: server config, virtual host, directory, .htaccess

Status: Core

Module: core

Compatibility: 2.3.9 and later

If an error can be detected within the configuration, this directive can be used to generate a custom error message, and
halt configuration parsing. The typical use is for reporting required modules which are missing from the configuration.

Example
ensure that mod_include is loaded
<IfModule !'include_module>
Error "mod_include is required by mod_foo. Load it with LoadModule."
</IfModule>

ensure that exactly one of SSL,NOSSL is defined
<IfDefine SSL>
<IfDefine NOSSL>

Error "Both SSL and NOSSL are defined. Define only one of them."
</IfDefine>
</IfDefine>
<IfDefine !SSL>
<IfDefine !NOSSL>

Error "Either SSL or NOSSL must be defined."
</IfDefine>
</IfDefine>

ErrorDocument Directive

Description: What the server will return to the client in case of an error

Syntax: ErrorDocument error—-code document
Context: server config, virtual host, directory, .htaccess
Override: FileInfo

Status: Core

Module: core

In the event of a problem or error, Apache httpd can be configured to do one of four things,

1. output a simple hardcoded error message
2. output a customized message
3. internally redirect to a local URL-path to handle the problem/error

4. redirect to an external URL to handle the problem/error

The first option is the default, while options 2-4 are configured using the ERRORDOCUMENT directive, which is fol-
lowed by the HTTP response code and a URL or a message. Apache httpd will sometimes offer additional information
regarding the problem/error.

From 2.4.13, expression syntax (p. 99) can be used inside the directive to produce dynamic strings and URLs.

398 CHAPTER 10. APACHE MODULES

URLSs can begin with a slash (/) for local web-paths (relative to the DOCUMENTROOT), or be a full URL which the
client can resolve. Alternatively, a message can be provided to be displayed by the browser. Note that deciding whether
the parameter is an URL, a path or a message is performed before any expression is parsed. Examples:

ErrorDocument 500 http://example.com/cgi-bin/server—error.cgi
ErrorDocument 404 /errors/bad_urls.php

ErrorDocument 401 /subscription_info.html

ErrorDocument 403 "Sorry, can’t allow you access today"

ErrorDocument 403 Forbidden!

ErrorDocument 403 /errors/forbidden.py?referrer=%{escape:%{HTTP_REFERER}}

Additionally, the special value default can be used to specify Apache httpd’s simple hardcoded message. While
not required under normal circumstances, default will restore Apache httpd’s simple hardcoded message for con-
figurations that would otherwise inherit an existing ERRORDOCUMENT.

ErrorDocument 404 /cgi-bin/bad_urls.pl

<Directory "/web/docs">
ErrorDocument 404 default
</Directory>

Note that when you specify an ERRORDOCUMENT that points to a remote URL (ie. anything with a method such as
http in front of it), Apache HTTP Server will send a redirect to the client to tell it where to find the document, even if
the document ends up being on the same server. This has several implications, the most important being that the client
will not receive the original error status code, but instead will receive a redirect status code. This in turn can confuse
web robots and other clients which try to determine if a URL is valid using the status code. In addition, if you use a
remote URL in an ErrorDocument 401, the client will not know to prompt the user for a password since it will
not receive the 401 status code. Therefore, if you use an ErrorDocument 401 directive, then it must refer to a
local document.

Microsoft Internet Explorer (MSIE) will by default ignore server-generated error messages when they are "too small"
and substitute its own "friendly" error messages. The size threshold varies depending on the type of error, but in
general, if you make your error document greater than 512 bytes, then MSIE will show the server-generated error
rather than masking it. More information is available in Microsoft Knowledge Base article Q294807°.

Although most error messages can be overridden, there are certain circumstances where the internal messages are
used regardless of the setting of ERRORDOCUMENT. In particular, if a malformed request is detected, normal request
processing will be immediately halted and the internal error message returned. This is necessary to guard against
security problems caused by bad requests.

If you are using mod_proxy, you may wish to enable PROXYERROROVERRIDE so that you can provide custom error
messages on behalf of your Origin servers. If you don’t enable ProxyErrorOverride, Apache httpd will not generate
custom error documents for proxied content.

See also

e documentation of customizable responses (p. 85)

Shttp://support.microsoft.com/default.aspx ?scid=kb;en-us; Q294807

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q294807

10.3. APACHE MODULE CORE 399

ErrorLog Directive

Description: Location where the server will log errors

Syntax: ErrorLog file-path|syslog[:facility]

Default: ErrorLog logs/error_log (Unix) ErrorLog logs/error.log (Windows
and 0S/2)

Context: server config, virtual host

Status: Core

Module: core

The ERRORLOG directive sets the name of the file to which the server will log any errors it encounters. If the file-path
is not absolute then it is assumed to be relative to the SERVERROOT.

ErrorLog "/var/log/httpd/error_log"
If the file-path begins with a pipe character " | " then it is assumed to be a command to spawn to handle the error log.
ErrorLog "|/usr/local/bin/httpd_errors"

See the notes on piped logs (p. 56) for more information.

Using syslog instead of a filename enables logging via syslogd(8) if the system supports it and if MOD_SYSLOG is
loaded. The default is to use syslog facility 1ocal7, but you can override this by using the syslog: facility
syntax where facility can be one of the names usually documented in syslog(1). The facility is effectively global, and
if it is changed in individual virtual hosts, the final facility specified affects the entire server.

ErrorLog syslog:user

Additional modules can provide their own ErrorLog providers. The syntax is similar to the syslog example above.

SECURITY: See the security tips (p. 364) document for details on why your security could be compromised if the
directory where log files are stored is writable by anyone other than the user that starts the server.

m Note

When entering a file path on non-Unix platforms, care should be taken to make sure that only
forward slashes are used even though the platform may allow the use of back slashes. In
general it is a good idea to always use forward slashes throughout the configuration files.

See also

e LOGLEVEL
e Apache HTTP Server Log Files (p. 56)

ErrorLogFormat Directive

Description: Format specification for error log entries

Syntax: ErrorLogFormat [connection|request] format
Context: server config, virtual host

Status: Core

Module: core

ERRORLOGFORMAT allows to specify what supplementary information is logged in the error log in addition to the
actual log message.

400 CHAPTER 10. APACHE MODULES

#Simple example
ErrorLogFormat "[%t] [%1] [pid %P] %F: %E: [client %a] SM"

Specifying connection or request as first parameter allows to specify additional formats, causing additional
information to be logged when the first message is logged for a specific connection or request, respectively. This
additional information is only logged once per connection/request. If a connection or request is processed without
causing any log message, the additional information is not logged either.

It can happen that some format string items do not produce output. For example, the Referer header is only present if
the log message is associated to a request and the log message happens at a time when the Referer header has already
been read from the client. If no output is produced, the default behavior is to delete everything from the preceding
space character to the next space character. This means the log line is implicitly divided into fields on non-whitespace
to whitespace transitions. If a format string item does not produce output, the whole field is omitted. For example,
if the remote address %a in the log format [$t] [%$1] [%a] %M is not available, the surrounding brackets are
not logged either. Space characters can be escaped with a backslash to prevent them from delimiting a field. The
combination "%’ (percent space) is a zero-width field delimiter that does not produce any output.

The above behavior can be changed by adding modifiers to the format string item. A - (minus) modifier causes a
minus to be logged if the respective item does not produce any output. In once-per-connection/request formats, it is
also possible to use the + (plus) modifier. If an item with the plus modifier does not produce any output, the whole
line is omitted.

A number as modifier can be used to assign a log severity level to a format item. The item will only be logged if the
severity of the log message is not higher than the specified log severity level. The number can range from 1 (alert)
over 4 (warn) and 7 (debug) to 15 (trace8).

For example, here’s what would happen if you added modifiers to the ${Referer}i token, which logs the Referer
request header.

Modified Token Meaning

$—{Referer}i Logs a — if Referer is not set.

$+{Referer}i Onmits the entire line if Referer is not set.

$4{Referer}i Logs the Referer only if the log message severity is higher than 4.

Some format string items accept additional parameters in braces.

FormatString Description

%% The percent sign

%$a Client IP address and port of the request

s{c}a Underlying peer IP address and port of the connection (see the MOD_REMOTEIP module)
SA Local IP-address and port

%{namele Request environment variable name

SE APR/OS error status code and string

SF Source file name and line number of the log call

${name}i Request header name

sk Number of keep-alive requests on this connection

%1 Loglevel of the message

$L Log ID of the request

${c}L Log ID of the connection

s{C}L Log ID of the connection if used in connection scope, empty otherwise

S$m Name of the module logging the message

$M The actual log message

%${name}n Request note name

%P Process ID of current process

ST Thread ID of current thread

${g}T System unique thread ID of current thread (the same ID as displayed by e.g. top; currently Linux only)

10.3. APACHE MODULE CORE 401

St The current time

s{u}t The current time including micro-seconds

${cu}tt The current time in compact ISO 8601 format, including micro-seconds

SV The canonical SERVERNAME of the current server.

SV The server name of the server serving the request according to the USECANONICALNAME setting.
\ (backslash space) Non-field delimiting space

% (percent space) Field delimiter (no output)

The log ID format $L produces a unique id for a connection or request. This can be used to correlate which log lines
belong to the same connection or request, which request happens on which connection. A %L format string is also
available in MOD_LOG_CONFIG to allow to correlate access log entries with error log lines. If MOD_UNIQUE_ID is
loaded, its unique id will be used as log ID for requests.

#Example (default format for threaded MPMs)

ErrorLogFormat " [%${u}t] [%$-m:%1] [pid %P:tid %T] %7F: %E: [client\ %a] %M%, \referer\%{Refe:

This would result in error messages such as:

[Thu May 12 08:28:57.652118 2011] [core:error] [pid 8777:tid
4326490112] [client ::1:58619] File does not exist:
/usr/local/apache2/htdocs/favicon.ico

Notice that, as discussed above, some fields are omitted entirely because they are not defined.

#Example (similar to the 2.2.x format)

)

ErrorLogFormat "[%t] [%$1] %7F: %E: [client\ %a] %M%, \referer\%${Referer}i"

#Advanced example with request/connection log IDs

ErrorLogFormat "[%${uc}t] [$—m:%-1] [R:%L] [C:%{C}L] %$7F: SE: S$M"
ErrorLogFormat request "[%{uc}t] [R:%L] Request %k on C:%{c}L pid:%P tid:%T"
ErrorLogFormat request "[%{uc}t] [R:%L] UA:’%$+{User—-Agent}i’"

ErrorLogFormat request "[%${ucl}t] [R:%L] Referer:’%+{Referer}i’"
ErrorLogFormat connection "[%{uc}t] [C:%{c}L] local\ %a remote\ %A"

L
L
L
C
See also

e ERRORLOG
e LOGLEVEL
e Apache HTTP Server Log Files (p. 56)

ExtendedStatus Directive

Description: Keep track of extended status information for each request

Syntax: ExtendedStatus On|Off
Default: ExtendedStatus Off[x]
Context: server config

Status: Core

Module: core

402 CHAPTER 10. APACHE MODULES

This option tracks additional data per worker about the currently executing request and creates a utilization summary.
You can see these variables during runtime by configuring MOD_STATUS. Note that other modules may rely on this
scoreboard.

This setting applies to the entire server and cannot be enabled or disabled on a virtualhost-by-virtualhost basis. The
collection of extended status information can slow down the server. Also note that this setting cannot be changed
during a graceful restart.

:Note that loading MOD_STATUS will change the default behavior to ExtendedStatus On, while
other third party modules may do the same. Such modules rely on collecting detailed infor-
mation about the state of all workers. The default is changed by MOD_STATUS beginning with
version 2.3.6. The previous default was always Off.

FileETag Directive
Description: File attributes used to create the ETag HTTP response header for static files
Syntax: FileETag component
Default: FileETag MTime Size
Context: server config, virtual host, directory, .htaccess
Override: Filelnfo
Status: Core
Module: core

Compatibility: ~ The default used to be "INodeMTimeSize" in 2.3.14 and earlier.

The FILEETAG directive configures the file attributes that are used to create the ETag (entity tag) response header
field when the document is based on a static file. (The ETag value is used in cache management to save network
bandwidth.) The FILEETAG directive allows you to choose which of these — if any — should be used. The recognized
keywords are:

INode The file’s i-node number will be included in the calculation
MTime The date and time the file was last modified will be included
Size The number of bytes in the file will be included

All All available fields will be used. This is equivalent to:
FileETag INode MTime Size

None If a document is file-based, no ETag field will be included in the response

The INode, MTime, and Size keywords may be prefixed with either + or —, which allow changes to be made to
the default setting inherited from a broader scope. Any keyword appearing without such a prefix immediately and
completely cancels the inherited setting.

If a directory’s configuration includes FileETagINodeMTimeSize, and a subdirectory’s includes
FileETag-INode, the setting for that subdirectory (which will be inherited by any sub-subdirectories that don’t
override it) will be equivalent to FileETagMTimeSize.

m Warning

Do not change the default for directories or locations that have WebDAV enabled and use
MOD_DAV_FS as a storage provider. MOD_DAV_FS uses MTimeSize as a fixed format for
ETag comparisons on conditional requests. These conditional requests will break if the ETag
format is changed via FILEETAG.

10.3. APACHE MODULE CORE 403

iServer Side Includes

An ETag is not generated for responses parsed by MOD_INCLUDE since the response entity can
change without a change of the INode, MTime, or Size of the static file with embedded SSI
directives.

Files Directive

Description: Contains directives that apply to matched filenames

Syntax: <Files filename> ... </Files>
Context: server config, virtual host, directory, .htaccess
Override: All

Status: Core

Module: core

The <FILES> directive limits the scope of the enclosed directives by filename. It is comparable to the <DIREC-
TORY> and <LOCATION>> directives. It should be matched with a </Files> directive. The directives given
within this section will be applied to any object with a basename (last component of filename) matching the specified
filename. <FILES> sections are processed in the order they appear in the configuration file, after the <DIRECTORY >
sections and . htaccess files are read, but before <LLOCATION> sections. Note that <FILES> can be nested inside
<DIRECTORY > sections to restrict the portion of the filesystem they apply to.

The filename argument should include a filename, or a wild-card string, where ? matches any single character, and *

matches any sequences of characters.

<Files "cat.html">
Insert stuff that applies to cat.html here
</Files>

<Files "?at.x">
This would apply to cat.html, bat.html, hat.php and so on.
</Files>

Regular expressions can also be used, with the addition of the ~ character. For example:

<Files ~ "\. (gif|jpe?glpng)$">
#...
</Files>
would match most common Internet graphics formats. <FILESMATCH>> is preferred, however.

Note that unlike <DIRECTORY > and <LOCATION> sections, <FILES> sections can be used inside .htaccess
files. This allows users to control access to their own files, at a file-by-file level.

See also

e How <Directory>, <Location> and <Files> sections work (p. 35) for an explanation of how these different
sections are combined when a request is received

FilesMatch Directive

Description: Contains directives that apply to regular-expression matched filenames

Syntax: <FilesMatch regex> ... </FilesMatch>
Context: server config, virtual host, directory, .htaccess

Override: All

Status: Core

Module: core

404 CHAPTER 10. APACHE MODULES

The <FILESMATCH>> directive limits the scope of the enclosed directives by filename, just as the <FILES> directive
does. However, it accepts a regular expression. For example:

<FilesMatch ".+\. (gif|jpe?glpng) $">
¥ o...
</FilesMatch>

would match most common Internet graphics formats.

:The .+ at the start of the regex ensures that files named .png, or . gif, for example, are not
matched.

From 2.4.8 onwards, named groups and backreferences are captured and written to the environment with the corre-
sponding name prefixed with "MATCH_" and in upper case. This allows elements of files to be referenced from
within expressions (p. 99) and modules like MOD_REWRITE. In order to prevent confusion, numbered (unnamed)
backreferences are ignored. Use named groups instead.

<FilesMatch """ (?<sitename>["/]+)">
require ldap-group cn=%{env:MATCH_SITENAME}, ou=combined, o=Example
</FilesMatch>

See also

e How <Directory>, <Location> and <Files> sections work (p. 35) for an explanation of how these different
sections are combined when a request is received

ForceType Directive

Description: Forces all matching files to be served with the specified media type in the HTTP Content-Type

header field
Syntax: ForceType media-type|None
Context: directory, .htaccess
Override: FileInfo
Status: Core
Module: core

When placed into an .htaccess file or a <DIRECTORY>, or <LOCATION> or <FILES> section, this directive
forces all matching files to be served with the content type identification given by media-type. For example, if you had
a directory full of GIF files, but did not want to label them all with . gif, you might want to use:

ForceType image/gif

Note that this directive overrides other indirect media type associations defined in mime.types or via the ADDTYPE.

You can also override more general FORCETYPE settings by using the value of None:

force all files to be image/gif:
<Location "/images">

ForceType image/gif
</Location>

but normal mime-type associations here:
<Location "/images/mixed">

ForceType None
</Location>

10.3. APACHE MODULE CORE 405

This directive primarily overrides the content types generated for static files served out of the filesystem. For resources
other than static files, where the generator of the response typically specifies a Content-Type, this directive has no
effect.

:f> Note

If no handler is explicitly set for a request, the specified content type will also be used as the
handler name.

When explicit directives such as SETHANDLER or ADDHANDLER do not apply to the current
request, the internal handler name normally set by those directives is instead set to the content
type specified by this directive.

This is a historical behavior that some third-party modules (such as mod_php) may look for a
"synthetic" content type used only to signal the module to take responsibility for the matching
request.

Configurations that rely on such "synthetic" types should be avoided. Additionally, configu-
rations that restrict access to SETHANDLER or ADDHANDLER should restrict access to this
directive as well.

GprofDir Directive
Description: Directory to write gmon.out profiling data to.
Syntax: GprofDir /tmp/gprof/|/tmp/gprof/%
Context: server config, virtual host
Status: Core
Module: core

When the server has been compiled with gprof profiling support, GPROFDIR causes gmon . out files to be written to
the specified directory when the process exits. If the argument ends with a percent symbol (’%’), subdirectories are
created for each process id.

This directive currently only works with the PREFORK MPM.

HostnameLookups Directive

Description: Enables DNS lookups on client IP addresses

Syntax: HostnameLookups On|Off|Double
Default: Hostnamelookups Off

Context: server config, virtual host, directory

Status: Core

Module: core

This directive enables DNS lookups so that host names can be logged (and passed to CGIs/SSIs in REMOTE_HOST).
The value Double refers to doing double-reverse DNS lookup. That is, after a reverse lookup is performed, a forward
lookup is then performed on that result. At least one of the IP addresses in the forward lookup must match the original
address. (In "tcpwrappers" terminology this is called PARANOID.)

Regardless of the setting, when MOD_AUTHZ_HOST is used for controlling access by hostname, a double reverse
lookup will be performed. This is necessary for security. Note that the result of this double-reverse isn’t generally
available unless you set HostnameLookups Double. For example, if only HostnameLookups On and a
request is made to an object that is protected by hostname restrictions, regardless of whether the double-reverse fails
or not, CGIs will still be passed the single-reverse result in REMOTE_HOST.

The default is Of £ in order to save the network traffic for those sites that don’t truly need the reverse lookups done.
It is also better for the end users because they don’t have to suffer the extra latency that a lookup entails. Heavily
loaded sites should leave this directive Of £, since DNS lookups can take considerable amounts of time. The utility

406 CHAPTER 10. APACHE MODULES

logresolve, compiled by default to the bin subdirectory of your installation directory, can be used to look up host
names from logged IP addresses offline.

Finally, if you have hostname-based Require directives (p. 536) , a hostname lookup will be performed regardless of
the setting of HostnameLookups.

If Directive

Description: Contains directives that apply only if a condition is satisfied by a request at runtime

Syntax: <If expression> ... </If>
Context: server config, virtual host, directory, .htaccess
Override: All

Status: Core

Module: core

The <IF> directive evaluates an expression at runtime, and applies the enclosed directives if and only if the expression
evaluates to true. For example:

<If "-z reqg(’Host’)">

would match HTTP/1.0 requests without a Host: header. Expressions may contain various shell-like operators for
string comparison (==, ! =, <, ...), integer comparison (-eq, —ne, ...), and others (-n, -z, — £, ...). It is also possible
to use regular expressions,

<If "% {QUERY_STRING} =" /(delete|commit)=.x?elem/">

shell-like pattern matches and many other operations. These operations can be done on request headers (req), envi-
ronment variables (env), and a large number of other properties. The full documentation is available in Expressions
in Apache HTTP Server (p. 99) .

Only directives that support the directory context (p. 377) can be used within this configuration section.

m Certain variables, such as CONTENT_TYPE and other response headers, are set after <If>
conditions have already been evaluated, and so will not be available to use in this directive.

See also

Expressions in Apache HTTP Server (p. 99) , for a complete reference and more examples.

<ELSEIF>

<ELSE>

How <Directory>, <Location>, <Files> sections work (p. 35) for an explanation of how these different
sections are combined when a request is received. <IF>, <ELSEIF>, and <ELSE> are applied last.

IfDefine Directive
Description: Encloses directives that will be processed only if a test is true at startup
Syntax: <IfDefine [!]parameter-name> ... </IfDefine>
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core

Module: core

10.3. APACHE MODULE CORE 407

The <IfDefine test>...</IfDefine> section is used to mark directives that are conditional. The direc-
tives within an <IFDEFINE> section are only processed if the test is true. If zest is false, everything between the start
and end markers is ignored.

The test in the <IFDEFINE> section directive can be one of two forms:

® parameter-name

e ! parameter-name

In the former case, the directives between the start and end markers are only processed if the parameter named
parameter-name is defined. The second format reverses the test, and only processes the directives if parameter-name
is not defined.

The parameter-name argument is a define as given on the ht tpd command line via -Dparameter at the time the
server was started or by the DEFINE directive.

<IFDEFINE> sections are nest-able, which can be used to implement simple multiple-parameter tests. Example:

httpd -DReverseProxy —-DUseCache -DMemCache

<IfDefine ReverseProxy>
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
<IfDefine UseCache>
LoadModule cache_module modules/mod_cache.so
<IfDefine MemCache>
LoadModule mem_cache_module modules/mod_mem_cache.so
</IfDefine>
<IfDefine !MemCache>
LoadModule cache_disk_module modules/mod_cache_disk.so
</IfDefine>
</IfDefine>
</IfDefine>

IfModule Directive

Description: Encloses directives that are processed conditional on the presence or absence of a specific
module

Syntax: <IfModule [!]module-file|module-identifier> ... </IfModule>

Context: server config, virtual host, directory, .htaccess

Override: All

Status: Core

Module: core

The <IfModule test>...</IfModule> section is used to mark directives that are conditional on the pres-
ence of a specific module. The directives within an <IFMODULE>> section are only processed if the zest is true. If fest
is false, everything between the start and end markers is ignored.

The test in the <IFMODULE> section directive can be one of two forms:

o module

o !module

408 CHAPTER 10. APACHE MODULES

In the former case, the directives between the start and end markers are only processed if the module named module
is included in Apache httpd — either compiled in or dynamically loaded using LOADMODULE. The second format
reverses the test, and only processes the directives if module is not included.

The module argument can be either the module identifier or the file name of the module, at the time it was compiled.
For example, rewrite_module is the identifier and mod_rewrite.c is the file name. If a module consists of
several source files, use the name of the file containing the string STANDARD20_MODULE_STUFF.

<IFMODULE> sections are nest-able, which can be used to implement simple multiple-module tests.

:)This section should only be used if you need to have one configuration file that works whether
or not a specific module is available. In normal operation, directives need not be placed in
<IFMODULE> sections.

Include Directive

Description: Includes other configuration files from within the server configuration files
Syntax: Include file-path|directory-path|wildcard

Context: server config, virtual host, directory

Status: Core

Module: core

Compatibility: Directory wildcard matching available in 2.3.6 and later

This directive allows inclusion of other configuration files from within the server configuration files.

Shell-style (fnmatch ()) wildcard characters can be used in the filename or directory parts of the path to include
several files at once, in alphabetical order. In addition, if INCLUDE points to a directory, rather than a file, Apache httpd
will read all files in that directory and any subdirectory. However, including entire directories is not recommended,
because it is easy to accidentally leave temporary files in a directory that can cause httpd to fail. Instead, we
encourage you to use the wildcard syntax shown below, to include files that match a particular pattern, such as *.conf,
for example.

The INCLUDE directive will fail with an error if a wildcard expression does not match any file. The INCLUDEOP-
TIONAL directive can be used if non-matching wildcards should be ignored.

The file path specified may be an absolute path, or may be relative to the SERVERROOT directory.

Examples:

Include /usr/local/apache2/conf/ssl.conf
Include /usr/local/apache2/conf/vhosts/*.conf

Or, providing paths relative to your SERVERROOT directory:

Include conf/ssl.conf
Include conf/vhosts/=*.conf

Wildcards may be included in the directory or file portion of the path. This example will fail if there is no subdirectory
in conf/vhosts that contains at least one *.conf file:

Include conf/vhosts/*/*.conf

Alternatively, the following command will just be ignored in case of missing files or directories:

IncludeOptional conf/vhosts/*/*.conf

10.3. APACHE MODULE CORE 409

See also

e INCLUDEOPTIONAL

e apachectl

IncludeOptional Directive

Description: Includes other configuration files from within the server configuration files
Syntax: IncludeOptional file-path|directory-path|wildcard
Context: server config, virtual host, directory

Status: Core

Module: core

Compatibility: Available in 2.3.6 and later

This directive allows inclusion of other configuration files from within the server configuration files. It works iden-
tically to the INCLUDE directive, with the exception that if wildcards do not match any file or directory, the IN-
CLUDEOPTIONAL directive will be silently ignored instead of causing an error.

See also

e INCLUDE

e apachectl

KeepAlive Directive

Description: Enables HTTP persistent connections

Syntax: KeepAlive On|Off
Default: KeepAlive On
Context: server config, virtual host
Status: Core

Module: core

The Keep-Alive extension to HTTP/1.0 and the persistent connection feature of HTTP/1.1 provide long-lived HTTP
sessions which allow multiple requests to be sent over the same TCP connection. In some cases this has been shown
to result in an almost 50% speedup in latency times for HTML documents with many images. To enable Keep-Alive
connections, set KeepAlive On.

For HTTP/1.0 clients, Keep-Alive connections will only be used if they are specifically requested by a client. In
addition, a Keep-Alive connection with an HTTP/1.0 client can only be used when the length of the content is known
in advance. This implies that dynamic content such as CGI output, SSI pages, and server-generated directory listings
will generally not use Keep-Alive connections to HTTP/1.0 clients. For HTTP/1.1 clients, persistent connections are
the default unless otherwise specified. If the client requests it, chunked encoding will be used in order to send content
of unknown length over persistent connections.

When a client uses a Keep-Alive connection, it will be counted as a single "request" for the MAXCONNECTION-
SPERCHILD directive, regardless of how many requests are sent using the connection.

See also

e MAXKEEPALIVEREQUESTS

410 CHAPTER 10. APACHE MODULES

KeepAliveTimeout Directive

Description: ~ Amount of time the server will wait for subsequent requests on a persistent connection
Syntax: KeepAliveTimeout num[ms]

Default: KeepAliveTimeout 5
Context: server config, virtual host
Status: Core

Module: core

The number of seconds Apache httpd will wait for a subsequent request before closing the connection. By adding a
postfix of ms the timeout can be also set in milliseconds. Once a request has been received, the timeout value specified
by the TIMEOUT directive applies.

Setting KEEPALIVETIMEOUT to a high value may cause performance problems in heavily loaded servers. The higher
the timeout, the more server processes will be kept occupied waiting on connections with idle clients.

If KEEPALIVETIMEOUT is not set for a name-based virtual host, the value of the first defined virtual host best match-
ing the local IP and port will be used.

Limit Directive

Description: Restrict enclosed access controls to only certain HTTP methods

Syntax: <Limit method [method] ... > ... </Limit>
Context: directory, .htaccess

Override: AuthConfig, Limit

Status: Core

Module: core

Access controls are normally effective for all access methods, and this is the usual desired behavior. In the general
case, access control directives should not be placed within a <LIMIT> section.

The purpose of the <LIMIT> directive is to restrict the effect of the access controls to the nominated HTTP methods.
For all other methods, the access restrictions that are enclosed in the <LIMIT> bracket will have no effect. The
following example applies the access control only to the methods POST, PUT, and DELETE, leaving all other methods
unprotected:

<Limit POST PUT DELETE>
Require valid-user
</Limit>

The method names listed can be one or more of: GET, POST, PUT, DELETE, CONNECT, OPTIONS, PATCH,
PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK, and UNLOCK. The method name is case-sensitive. If
GET is used, it will also restrict HEAD requests. The TRACE method cannot be limited (see TRACEENABLE).

m A <LIMITEXCEPT> section should always be used in preference to a <LIMIT> section
when restricting access, since a <LIMITEXCEPT> section provides protection against arbi-
trary methods.

The <LIMIT> and <LIMITEXCEPT> directives may be nested. In this case, each successive level of <LIMIT> or
<LIMITEXCEPT> directives must further restrict the set of methods to which access controls apply.

m When using <LIMIT> or <LIMITEXCEPT> directives with the REQUIRE directive, note that
the first REQUIRE to succeed authorizes the request, regardless of the presence of other RE-
QUIRE directives.

10.3. APACHE MODULE CORE 411

For example, given the following configuration, all users will be authorized for POST requests, and the Require
group editors directive will be ignored in all cases:

<LimitExcept GET>
Require valid-user
</LimitExcept>
<Limit POST>
Require group editors
</Limit>

LimitExcept Directive

Description: Restrict access controls to all HTTP methods except the named ones

Syntax: <LimitExcept method [method] ... > ... </LimitExcept>
Context: directory, .htaccess

Override: AuthConfig, Limit

Status: Core

Module: core

<LIMITEXCEPT> and </LimitExcept> are used to enclose a group of access control directives which will then
apply to any HTTP access method not listed in the arguments; i.e., it is the opposite of a <LIMIT> section and can be
used to control both standard and nonstandard/unrecognized methods. See the documentation for <LIMIT> for more
details.

For example:

<LimitExcept POST GET>
Require valid-user
</LimitExcept>

LimitInternalRecursion Directive

Description: Determine maximum number of internal redirects and nested subrequests

Syntax: LimitInternalRecursion number [number]
Default: LimitInternalRecursion 10

Context: server config, virtual host

Status: Core

Module: core

An internal redirect happens, for example, when using the ACTION directive, which internally redirects the original
request to a CGI script. A subrequest is Apache httpd’s mechanism to find out what would happen for some URI
if it were requested. For example, MOD_DIR uses subrequests to look for the files listed in the DIRECTORYINDEX
directive.

LIMITINTERNALRECURSION prevents the server from crashing when entering an infinite loop of internal redirects or
subrequests. Such loops are usually caused by misconfigurations.

The directive stores two different limits, which are evaluated on per-request basis. The first number is the maximum
number of internal redirects that may follow each other. The second number determines how deeply subrequests may
be nested. If you specify only one number, it will be assigned to both limits.

LimitInternalRecursion 5

412 CHAPTER 10. APACHE MODULES

LimitRequestBody Directive

Description: Restricts the total size of the HTTP request body sent from the client

Syntax: LimitRequestBody bytes

Default: LimitRequestBody 0

Context: server config, virtual host, directory, .htaccess
Override: All

Status: Core

Module: core

This directive specifies the number of bytes from 0 (meaning unlimited) to 2147483647 (2GB) that are allowed in a
request body. See the note below for the limited applicability to proxy requests.

The LIMITREQUESTBODY directive allows the user to set a limit on the allowed size of an HTTP request message
body within the context in which the directive is given (server, per-directory, per-file or per-location). If the client
request exceeds that limit, the server will return an error response instead of servicing the request. The size of a
normal request message body will vary greatly depending on the nature of the resource and the methods allowed on
that resource. CGI scripts typically use the message body for retrieving form information. Implementations of the PUT
method will require a value at least as large as any representation that the server wishes to accept for that resource.

This directive gives the server administrator greater control over abnormal client request behavior, which may be
useful for avoiding some forms of denial-of-service attacks.

If, for example, you are permitting file upload to a particular location and wish to limit the size of the uploaded file to
100K, you might use the following directive:

LimitRequestBody 102400

:i For a full description of how this directive is interpreted by proxy requests, see the MOD_PROXY
documentation.

LimitRequestFields Directive

Description: Limits the number of HTTP request header fields that will be accepted from the client

Syntax: LimitRequestFields number
Default: LimitRequestFields 100
Context: server config, virtual host

Status: Core

Module: core

Number is an integer from 0 (meaning unlimited) to 32767. The default value is defined by the compile-time constant
DEFAULT_LIMIT_REQUEST_FIELDS (100 as distributed).

The LIMITREQUESTFIELDS directive allows the server administrator to modify the limit on the number of request
header fields allowed in an HTTP request. A server needs this value to be larger than the number of fields that a normal
client request might include. The number of request header fields used by a client rarely exceeds 20, but this may vary
among different client implementations, often depending upon the extent to which a user has configured their browser
to support detailed content negotiation. Optional HTTP extensions are often expressed using request header fields.

This directive gives the server administrator greater control over abnormal client request behavior, which may be
useful for avoiding some forms of denial-of-service attacks. The value should be increased if normal clients see an
error response from the server that indicates too many fields were sent in the request.

For example:

LimitRequestFields 50

10.3. APACHE MODULE CORE 413

m Warning

When name-based virtual hosting is used, the value for this directive is taken from the default
(first-listed) virtual host for the local IP and port combination.

LimitRequestFieldSize Directive

Description: Limits the size of the HTTP request header allowed from the client

Syntax: LimitRequestFieldSize bytes
Default: LimitRequestFieldSize 8190
Context: server config, virtual host

Status: Core

Module: core

This directive specifies the number of bytes that will be allowed in an HTTP request header.

The LIMITREQUESTFIELDSIZE directive allows the server administrator to set the limit on the allowed size of an
HTTP request header field. A server needs this value to be large enough to hold any one header field from a normal
client request. The size of a normal request header field will vary greatly among different client implementations,
often depending upon the extent to which a user has configured their browser to support detailed content negotiation.
SPNEGO authentication headers can be up to 12392 bytes.

This directive gives the server administrator greater control over abnormal client request behavior, which may be
useful for avoiding some forms of denial-of-service attacks.

For example:

LimitRequestFieldSize 4094

:/>Under normal conditions, the value should not be changed from the default.

m Warning

When name-based virtual hosting is used, the value for this directive is taken from the default
(first-listed) virtual host best matching the current IP address and port combination.

LimitRequestLine Directive

Description: Limit the size of the HTTP request line that will be accepted from the client

Syntax: LimitRequestLine bytes
Default: LimitRequestLine 8190
Context: server config, virtual host

Status: Core

Module: core

This directive sets the number of bytes that will be allowed on the HTTP request-line.

The LIMITREQUESTLINE directive allows the server administrator to set the limit on the allowed size of a client’s
HTTP request-line. Since the request-line consists of the HTTP method, URI, and protocol version, the LIMITRE-
QUESTLINE directive places a restriction on the length of a request-URI allowed for a request on the server. A server
needs this value to be large enough to hold any of its resource names, including any information that might be passed
in the query part of a GET request.

This directive gives the server administrator greater control over abnormal client request behavior, which may be
useful for avoiding some forms of denial-of-service attacks.

For example:

414 CHAPTER 10. APACHE MODULES

LimitRequestLine 4094

iUnder normal conditions, the value should not be changed from the default.

m Warning

When name-based virtual hosting is used, the value for this directive is taken from the default
(first-listed) virtual host best matching the current IP address and port combination.

LimitXMLRequestBody Directive

Description: Limits the size of an XML-based request body

Syntax: LimitXMLRequestBody bytes
Default: LimitXMLRequestBody 1000000
Context: server config, virtual host, directory, .htaccess
Override: All

Status: Core

Module: core

Limit (in bytes) on maximum size of an XML-based request body. A value of 0 will disable any checking.

Example:

LimitXMLRequestBody 0

Location Directive

Description: Applies the enclosed directives only to matching URLs

Syntax: <Location URL-path|URL> ... </Location>
Context: server config, virtual host

Status: Core

Module: core

The <LOCATION> directive limits the scope of the enclosed directives by URL. It is similar to the <DIRECTORY >
directive, and starts a subsection which is terminated with a </Location> directive. <LOCATION>> sections are
processed in the order they appear in the configuration file, after the <DIRECTORY> sections and . htaccess files
are read, and after the <FILES> sections.

<LOCATION> sections operate completely outside the filesystem. This has several consequences. Most importantly,
<LocATION> directives should not be used to control access to filesystem locations. Since several different URLs
may map to the same filesystem location, such access controls may by circumvented.

The enclosed directives will be applied to the request if the path component of the URL meets any of the following
criteria:

e The specified location matches exactly the path component of the URL.

e The specified location, which ends in a forward slash, is a prefix of the path component of the URL (treated as
a context root).

e The specified location, with the addition of a trailing slash, is a prefix of the path component of the URL (also
treated as a context root).

In the example below, where no trailing slash is used, requests to /privatel, /privatel/ and /privatel/file.txt will have
the enclosed directives applied, but /privatelother would not.

10.3. APACHE MODULE CORE 415

<Location "/privatel">
#
</Location>

In the example below, where a trailing slash is used, requests to /private2/ and /private2/file.txt will have the enclosed
directives applied, but /private2 and /private2other would not.

<Location "/private2/">
#
</Location>

> When to use <LOCATION>

Use <LOCATION> to apply directives to content that lives outside the filesystem. For content
that lives in the filesystem, use <DIRECTORY > and <FILES>. An exception is <Location
" /">, which is an easy way to apply a configuration to the entire server.

For all origin (non-proxy) requests, the URL to be matched is a URL-path of the form /path/. No scheme,
hostname, port, or query string may be included. For proxy requests, the URL to be matched is of the form
scheme://servername/path, and you must include the prefix.

The URL may use wildcards. In a wild-card string, ? matches any single character, and * matches any sequences of
characters. Neither wildcard character matches a / in the URL-path.

Regular expressions can also be used, with the addition of the ~ character. For example:

<Location ~ "/ (extral|special)/data">
#...

</Location>

would match URLS that contained the substring /extra/data or /special/data. The directive <LOCATION-
MATCH> behaves identical to the regex version of <LOCATION>, and is preferred, for the simple reason that ~ is
hard to distinguish from — in many fonts.

The <LOCATION> functionality is especially useful when combined with the SETHANDLER directive. For example,
to enable status requests but allow them only from browsers at example . com, you might use:

<Location "/status">
SetHandler server-status
Require host example.com
</Location>

ﬁNote about / (slash)

The slash character has special meaning depending on where in a URL it appears. People
may be used to its behavior in the filesystem where multiple adjacent slashes are frequently
collapsed to a single slash (i.e., /home///foo is the same as /home/foo). In URL-space
this is not necessarily true. The <LOCATIONMATCH> directive and the regex version of
<LOCATION> require you to explicitly specify multiple slashes if that is your intention.

For example, <LocationMatch ""/abc"> would match the request URL /abc but
not the request URL //abc. The (non-regex) <LOCATION> directive behaves similarly
when used for proxy requests. But when (non-regex) <LLOCATION>> is used for non-proxy re-
quests it will implicitly match multiple slashes with a single slash. For example, if you specify
<Location "/abc/def"> and the requestis to /abc//def then it will match.

See also

416 CHAPTER 10. APACHE MODULES

e How <Directory>, <Location> and <Files> sections work (p. 35) for an explanation of how these different
sections are combined when a request is received.

e LOCATIONMATCH

LocationMatch Directive

Description: Applies the enclosed directives only to regular-expression matching URLs

Syntax: <LocationMatch regex> ... </LocationMatch>
Context: server config, virtual host

Status: Core

Module: core

The <LOCATIONMATCH>> directive limits the scope of the enclosed directives by URL, in an identical manner to
<LOCATION>. However, it takes a regular expression as an argument instead of a simple string. For example:

<LocationMatch "/ (extra|special)/data">
#
</LocationMatch>

would match URLSs that contained the substring /extra/data or /special/data.

ﬁlf the intent is that a URL starts with /extra/data, rather than merely contains
/extra/data, prefix the regular expression with a ~ to require this.

<LocationMatch ""/ (extral|special)/data">

From 2.4.8 onwards, named groups and backreferences are captured and written to the environment with the corre-
sponding name prefixed with "MATCH_" and in upper case. This allows elements of URLs to be referenced from
within expressions (p. 99) and modules like MOD_REWRITE. In order to prevent confusion, numbered (unnamed)
backreferences are ignored. Use named groups instead.

<LocationMatch ""/combined/ (?<sitename>["/]+)">
require ldap-group cn=%{env:MATCH_SITENAME}, ou=combined, o=Example
</LocationMatch>

See also

e How <Directory>, <Location> and <Files> sections work (p. 35) for an explanation of how these different
sections are combined when a request is received

LogLevel Directive

Description: Controls the verbosity of the ErrorLog

Syntax: LogLevel [module:]level [module:level]
Default: LogLevel warn

Context: server config, virtual host, directory

Status: Core

Module: core

Compatibility: Per-module and per-directory configuration is available in Apache HTTP Server 2.3.6 and later

LOGLEVEL adjusts the verbosity of the messages recorded in the error logs (see ERRORLOG directive). The following
levels are available, in order of decreasing significance:

10.3. APACHE MODULE CORE 417

Level Description Example

emerg Emergencies - system is unusable. "Child cannot open lock file. Exiting"

alert Action must be taken immediately. "getpwuid: couldn’t determine user name from uid"

crit Critical Conditions. "socket: Failed to get a socket, exiting child"

error Error conditions. "Premature end of script headers"

warn Warning conditions. "child process 1234 did not exit, sending another SIGHUP"

notice Normal but significant condition. "httpd: caught SIGBUS, attempting to dump core in ..."

info Informational. "Server seems busy, (you may need to increase StartServers, or

Min/MaxSpareServers)..."

debug Debug-level messages "Opening config file ..."

tracel Trace messages "proxy: FTP: control connection complete"

trace2 Trace messages "proxy: CONNECT: sending the CONNECT request to the re-

mote proxy"

trace3 Trace messages "openssl: Handshake: start"

traced Trace messages "read from buffered SSL brigade, mode 0, 17 bytes"

traceb Trace messages "map lookup FAILED: map=rewritemap key=keyname"

traceb Trace messages "cache lookup FAILED, forcing new map lookup™"

trace? Trace messages, dumping large | "— 0000: 02 23 44 30 13 40 ac 34 df 3d bf 92 194939 15 —"
amounts of data

trace8 Trace messages, dumping large | "— 0000: 02 23 44 30 13 40 ac 34 df 3d bf 92 1949 39 15 —"
amounts of data

When a particular level is specified, messages from all other levels of higher significance will be reported as well. E.g.,
when LogLevel info is specified, then messages with log levels of not ice and warn will also be posted.

Using a level of at least crit is recommended.

For example:

LogLevel notice

:/> Note

When logging to a regular file, messages of the level not ice cannot be suppressed and thus
are always logged. However, this doesn’t apply when logging is done using syslog.

Specifying a level without a module name will reset the level for all modules to that level. Specifying a level with a
module name will set the level for that module only. It is possible to use the module source file name, the module iden-
tifier, or the module identifier with the trailing _-module omitted as module specification. This means the following
three specifications are equivalent:

LogLevel info ssl:warn
LogLevel info mod_ssl.c:warn
LogLevel info ssl_module:warn

It is also possible to change the level per directory:

LogLevel info

<Directory "/usr/local/apache/htdocs/app">
LogLevel debug

</Directory>

:Per directory loglevel configuration only affects messages that are logged after the request has
been parsed and that are associated with the request. Log messages which are associated with
the server or the connection are not affected. The latter can be influenced by the LOGLEVEL-
OVERRIDE directive, though.

418 CHAPTER 10. APACHE MODULES

See also

e ERRORLOG

e ERRORLOGFORMAT

e LOGLEVELOVERRIDE

e Apache HTTP Server Log Files (p. 56)

LoglLevelOverride Directive

Description: Override the verbosity of the ErrorLog for certain clients

Syntax: Loglevel ipaddress|[/prefixlen] [module:]level [module:level]
Default: unset

Context: server config, virtual host

Status: Core

Module: core

Compatibility: ~ Available in Apache HTTP Server 2.5.0 and later

LOGLEVELOVERRIDE adjusts the LOGLEVEL for requests coming from certain client IP addresses. This allows to
enable verbose logging only for certain test clients. The IP address is checked at a very early state in the connection
processing. Therefore, LOGLEVELOVERRIDE allows to change the log level for things like the SSL handshake which
happen before a LOGLEVEL directive in an <IF> container would be evaluated.

LOoGLEVELOVERRIDE accepts either a single IP-address or a CIDR IP-address/len subnet specification. For the syntax
of the loglevel specification, see the LOGLEVEL directive.

For requests that match a LOGLEVELOVERRIDE directive, per-directory specifications of LOGLEVEL are ignored.

Examples:

LogLevelOverride 192.0.2.0/24 ssl:traceb
LogLevelOverride 192.0.2.7 ssl:trace8

:LOGLEVELOVERRIDE only affects log messages that are associated with the request or the
connection. Log messages which are associated with the server are not affected.

See also

e LOGLEVEL

MaxKeepAliveRequests Directive

Description: Number of requests allowed on a persistent connection

Syntax: MaxKeepAliveRequests number
Default: MaxKeepAliveRequests 100
Context: server config, virtual host

Status: Core

Module: core

The MAXKEEPALIVEREQUESTS directive limits the number of requests allowed per connection when KEEPALIVE
is on. If it is set to O, unlimited requests will be allowed. We recommend that this setting be kept to a high value for
maximum server performance.

For example:

MaxKeepAliveRequests 500

10.3. APACHE MODULE CORE 419

MaxRangeOverlaps Directive

Description: Number of overlapping ranges (eg: 100-200, 150-300) allowed before returning the com-
plete resource

Syntax: MaxRangeOverlaps default | unlimited | none | number-of-ranges
Default: MaxRangeOverlaps 20

Context: server config, virtual host, directory

Status: Core

Module: core

Compatibility: ~ Available in Apache HTTP Server 2.3.15 and later

The MAXRANGEOVERLAPS directive limits the number of overlapping HTTP ranges the server is willing to return
to the client. If more overlapping ranges than permitted are requested, the complete resource is returned instead.

default Limits the number of overlapping ranges to a compile-time default of 20.
none No overlapping Range headers are allowed.
unlimited The server does not limit the number of overlapping ranges it is willing to satisfy.

number-of-ranges A positive number representing the maximum number of overlapping ranges the server is willing
to satisfy.

MaxRangeReversals Directive

Description: Number of range reversals (eg: 100-200, 50-70) allowed before returning the complete
resource

Syntax: MaxRangeReversals default | unlimited | none |
number-of-ranges

Default: MaxRangeReversals 20

Context: server config, virtual host, directory

Status: Core

Module: core

Compatibility: ~ Available in Apache HTTP Server 2.3.15 and later

The MAXRANGEREVERSALS directive limits the number of HTTP Range reversals the server is willing to return to
the client. If more ranges reversals than permitted are requested, the complete resource is returned instead.

default Limits the number of range reversals to a compile-time default of 20.
none No Range reversals headers are allowed.
unlimited The server does not limit the number of range reversals it is willing to satisfy.

number-of-ranges A positive number representing the maximum number of range reversals the server is willing to
satisfy.

MaxRanges Directive

Description: Number of ranges allowed before returning the complete resource

Syntax: MaxRanges default | unlimited | none | number-of-ranges
Default: MaxRanges 200

Context: server config, virtual host, directory

Status: Core

Module: core

Compatibility: ~ Available in Apache HTTP Server 2.3.15 and later

420 CHAPTER 10. APACHE MODULES

The MAXRANGES directive limits the number of HTTP ranges the server is willing to return to the client. If more
ranges than permitted are requested, the complete resource is returned instead.

default Limits the number of ranges to a compile-time default of 200.
none Range headers are ignored.
unlimited The server does not limit the number of ranges it is willing to satisfy.

number-of-ranges A positive number representing the maximum number of ranges the server is willing to satisfy.

MergeTrailers Directive

Description: Determines whether trailers are merged into headers
Syntax: MergeTrailers [on]|off]

Default: MergeTrailers off

Context: server config, virtual host

Status: Core

Module: core

Compatibility: 2.4.11 and later

This directive controls whether HTTP trailers are copied into the internal representation of HTTP headers. This
merging occurs when the request body has been completely consumed, long after most header processing would have
a chance to examine or modify request headers.

This option is provided for compatibility with releases prior to 2.4.11, where trailers were always merged.

Mutex Directive

Description: Configures mutex mechanism and lock file directory for all or specified mutexes
Syntax: Mutex mechanism [default|mutex—-name] ... [OmitPID]
Default: Mutex default

Context: server config

Status: Core

Module: core

Compatibility: ~ Available in Apache HTTP Server 2.3.4 and later

The MUTEX directive sets the mechanism, and optionally the lock file location, that httpd and modules use to serialize
access to resources. Specify default as the second argument to change the settings for all mutexes; specify a mutex
name (see table below) as the second argument to override defaults only for that mutex.

The MUTEX directive is typically used in the following exceptional situations:

e change the mutex mechanism when the default mechanism selected by APR has a functional or performance
problem

e change the directory used by file-based mutexes when the default directory does not support locking

:i Supported modules

This directive only configures mutexes which have been registered with the core server using
the ap_-mutex_register () APIL All modules bundled with httpd support the MUTEX di-
rective, but third-party modules may not. Consult the documentation of the third-party module,
which must indicate the mutex name(s) which can be configured if this directive is supported.

The following mutex mechanisms are available:

10.3. APACHE MODULE CORE 421

e default | yes This selects the default locking implementation, as determined by APR. The default locking
implementation can be displayed by running htt pd with the -V option.

e none | no This effectively disables the mutex, and is only allowed for a mutex if the module indicates that it
is a valid choice. Consult the module documentation for more information.

e posixsem This is a mutex variant based on a Posix semaphore.

m Warning

The semaphore ownership is not recovered if a thread in the process holding the mutex seg-
faults, resulting in a hang of the web server.

e sysvsem This is a mutex variant based on a SystemV IPC semaphore.

m Warning

It is possible to "leak" SysV semaphores if processes crash before the semaphore is removed.

m Security

The semaphore API allows for a denial of service attack by any CGIs running under the same
uid as the webserver (i.e., all CGIs, unless you use something like suexec or cgiwrapper).

e sem This selects the "best" available semaphore implementation, choosing between Posix and SystemV IPC
semaphores, in that order.

e pthread This is a mutex variant based on cross-process Posix thread mutexes.

m Warning

On most systems, if a child process terminates abnormally while holding a mutex that uses this
implementation, the server will deadlock and stop responding to requests. When this occurs,
the server will require a manual restart to recover.

Solaris and Linux are notable exceptions as they provide a mechanism which usually allows
the mutex to be recovered after a child process terminates abnormally while holding a mutex.
If your system is POSIX compliant or if it implements the
pthreadmutexattr_setrobust_np () function, you may be able to use the pthread
option safely.

e fcntl:/path/to/mutex This is a mutex variant where a physical (lock-)file and the fcnt1 () function
are used as the mutex.

m Warning

When multiple mutexes based on this mechanism are used within multi-threaded, multi-
process environments, deadlock errors (EDEADLK) can be reported for valid mutex opera-
tions if fcntl () is not thread-aware, such as on Solaris.

e flock:/path/to/mutex This is similar to the fcntl:/path/to/mutex method with the exception
that the £1ock () function is used to provide file locking.

e file:/path/to/mutex This selects the "best" available file locking implementation, choosing between
fentl and £1lock, in that order.

Most mechanisms are only available on selected platforms, where the underlying platform and APR support it. Mech-
anisms which aren’t available on all platforms are posixsem, sysvsem, sem, pthread, fcntl, flock, and file.

With the file-based mechanisms fentl and flock, the path, if provided, is a directory where the lock file will be created.
The default directory is httpd’s run-time file directory, DEFAULTRUNTIMEDIR. If a relative path is provided, it is
relative to DEFAULTRUNTIMEDIR. Always use a local disk filesystem for /path/to/mutex and never a directory

422 CHAPTER 10. APACHE MODULES

residing on a NFS- or AFS-filesystem. The basename of the file will be the mutex type, an optional instance string
provided by the module, and unless the OmitPID keyword is specified, the process id of the httpd parent process will
be appended to make the file name unique, avoiding conflicts when multiple httpd instances share a lock file directory.
For example, if the mutex name is mpm-accept and the lock file directory is /var/httpd/locks, the lock file
name for the httpd instance with parent process id 12345 would be /var/httpd/locks/mpm—accept.12345.

m Security

It is best to avoid putting mutex files in a world-writable directory such as /var/tmp because
someone could create a denial of service attack and prevent the server from starting by creating
a lockfile with the same name as the one the server will try to create.

The following table documents the names of mutexes used by httpd and bundled modules.

Mutex name Module(s) Protected resource

mpm-accept PREFORK and WORKER MPMs incoming connections, to avoid the thun-
dering herd problem; for more informa-
tion, refer to the performance tuning (p.
339) documentation

authdigest-client MOD_AUTH_DIGEST client list in shared memory
authdigest-opaque MOD_AUTH_DIGEST counter in shared memory
ldap-cache MOD_LDAP LDAP result cache

rewrite-map MOD_REWRITE communication with external mapping

programs, to avoid intermixed I/O from
multiple requests

ssl-cache MOD_SSL SSL session cache

ssl-stapling MOD_SSL OCSP stapling response cache

watchdog-callback MOD_WATCHDOG callback function of a particular client
module

The OmitPID keyword suppresses the addition of the httpd parent process id from the lock file name.

In the following example, the mutex mechanism for the MPM accept mutex will be changed from the compiled-in
default to fcnt1, with the associated lock file created in directory /var/httpd/locks. The mutex mechanism
for all other mutexes will be changed from the compiled-in default to sysvsem.

Mutex sysvsem default
Mutex fcntl:/var/httpd/locks mpm-accept

NameVirtualHost Directive

Description: DEPRECATED: Designates an IP address for name-virtual hosting

Syntax: NameVirtualHost addr[:port]
Context: server config

Status: Core

Module: core

Prior to 2.3.11, NAMEVIRTUALHOST was required to instruct the server that a particular IP address and port combi-
nation was usable as a name-based virtual host. In 2.3.11 and later, any time an IP address and port combination is
used in multiple virtual hosts, name-based virtual hosting is automatically enabled for that address.

This directive currently has no effect.

See also

e Virtual Hosts documentation (p. 124)

10.3. APACHE MODULE CORE 423

Options Directive

Description: Configures what features are available in a particular directory
Syntax: Options [+|-]option [[+]|-]option]

Default: Options FollowSymlinks

Context: server config, virtual host, directory, .htaccess

Override: Options

Status: Core

Module: core

Compatibility: ~ The default was changed from All to FollowSymlinks in 2.3.11

The OPTIONS directive controls which server features are available in a particular directory.

option can be set to None, in which case none of the extra features are enabled, or one or more of the following:

All All options except for MultiViews.
ExecCGI Execution of CGI scripts using MOD_CGI is permitted.
FollowSymLinks The server will follow symbolic links in this directory. This is the default setting.

:Even though the server follows the symlink it does not change the pathname used to match
against <DIRECTORY > sections.
The FollowSymLinks and SymLinksIfOwnerMatch OPTIONS work only in <DIREC-
TORY> sections or . htaccess files.
Omitting this option should not be considered a security restriction, since symlink testing is
subject to race conditions that make it circumventable.

Includes Server-side includes provided by MOD_INCLUDE are permitted.

IncludesNOEXEC Server-side includes are permitted, but the #exec cmd and #exec cgi are disabled. It is
still possible to #include virtual CGI scripts from SCRIPTALIASed directories.

Indexes If a URL which maps to a directory is requested and there is no DIRECTORYINDEX (e.g., index.html)
in that directory, then MOD_AUTOINDEX will return a formatted listing of the directory.

MultivViews Content negotiated (p. 78) "MultiViews" are allowed using MOD_NEGOTIATION.

: Note

This option gets ignored if set anywhere other than <DIRECTORY>, as MOD_NEGOTIATION
needs real resources to compare against and evaluate from.

SymLinksIfOwnerMatch The server will only follow symbolic links for which the target file or directory is
owned by the same user id as the link.

: Note

The FollowSymLinks and SymLinksIfOwnerMatch OPTIONS work only in <DIREC-
TORY > sections or . htaccess files.

This option should not be considered a security restriction, since symlink testing is subject to
race conditions that make it circumventable.

Normally, if multiple OPTIONS could apply to a directory, then the most specific one is used and others are ignored;
the options are not merged. (See how sections are merged (p. 35) .) However if all the options on the OPTIONS
directive are preceded by a + or — symbol, the options are merged. Any options preceded by a + are added to the
options currently in force, and any options preceded by a — are removed from the options currently in force.

i Note

Mixing OPTIONS with a + or — with those without is not valid syntax and will be rejected
during server startup by the syntax check with an abort.

For example, without any + and — symbols:

424 CHAPTER 10. APACHE MODULES

<Directory "/web/docs">
Options Indexes FollowSymLinks
</Directory>

<Directory "/web/docs/spec">
Options Includes
</Directory>

then only Includes will be set for the /web/docs/spec directory. However if the second OPTIONS directive
uses the + and — symbols:

<Directory "/web/docs">
Options Indexes FollowSymLinks
</Directory>

<Directory "/web/docs/spec">
Options +Includes —-Indexes
</Directory>

then the options FollowSymLinks and Includes are set for the /web/docs/spec directory.

:> Note

Using —~-IncludesNOEXEC or —Includes disables server-side includes completely regard-
less of the previous setting.

The default in the absence of any other settings is FollowSymlinks.

Protocol Directive

Description: Protocol for a listening socket
Syntax: Protocol protocol
Context: server config, virtual host
Status: Core

Module: core

Compatibility: ~ On Windows, only available from Apache 2.3.3 and later.

This directive specifies the protocol used for a specific listening socket. The protocol is used to determine which
module should handle a request and to apply protocol specific optimizations with the ACCEPTFILTER directive.

You only need to set the protocol if you are running on non-standard ports; otherwise, ht tp is assumed for port 80
and https for port 443.

For example, if you are running ht tps on a non-standard port, specify the protocol explicitly:

Protocol https

You can also specify the protocol using the LISTEN directive.

See also

e ACCEPTFILTER

e LISTEN

10.3. APACHE MODULE CORE 425

Protocols Directive

Description: Protocols available for a server/virtual host
Syntax: Protocols protocol

Default: Protocols http/1.1

Context: server config, virtual host

Status: Core

Module: core

Compatibility: Only available from Apache 2.4.17 and later.

This directive specifies the list of protocols supported for a server/virtual host. The list determines the allowed proto-
cols a client may negotiate for this server/host.

You need to set protocols if you want to extend the available protocols for a server/host. By default, only the http/1.1
protocol (which includes the compatibility with 1.0 and 0.9 clients) is allowed.

For example, if you want to support HTTP/2 for a server with TLS, specify:

Protocols h2 http/1.1

Valid protocols are http /1.1 for http and https connections, h2 on https connections and h2c for http connections.
Modules may enable more protocols.

It is safe to specify protocols that are unavailable/disabled. Such protocol names will simply be ignored.

Protocols specified in base servers are inherited for virtual hosts only if the virtual host has no own Protocols directive.
Or, the other way around, Protocols directives in virtual hosts replace any such directive in the base server.

See also

e PROTOCOLSHONORORDER

ProtocolsHonorOrder Directive

Description: Determines if order of Protocols determines precedence during negotiation
Syntax: ProtocolsHonorOrder On|Off

Default: ProtocolsHonorOrder On

Context: server config, virtual host

Status: Core

Module: core

Compatibility: ~ Only available from Apache 2.4.17 and later.

This directive specifies if the server should honor the order in which the PROTOCOLS directive lists protocols.
If configured Off, the client supplied list order of protocols has precedence over the order in the server configuration.

With PROTOCOLSHONORORDER set to on (default), the client ordering does not matter and only the ordering in the
server settings influences the outcome of the protocol negotiation.

See also

e PROTOCOLS

426 CHAPTER 10. APACHE MODULES

QualifyRedirectURL Directive

Description: Controls whether the REDIRECT_URL environment variable is fully qualified

Syntax: QualifyRedirectURL ON|OFF

Default: QualifyRedirectURL OFF

Context: server config, virtual host, directory

Override: Filelnfo

Status: Core

Module: core

Compatibility: Directive supported in 2.4.18 and later. 2.4.17 acted as if *QualifyRedirectURL ON’ was
configured.

This directive controls whether the server will ensure that the REDIRECT_URL environment variable is fully quali-
fied. By default, the variable contains the verbatim URL requested by the client, such as "/index.html". With QUAL-
IFYREDIRECTURL ON, the same request would result in a value such as "http://www.example.com/index.html".

Even without this directive set, when a request is issued against a fully qualified URL, REDIRECT_URL will remain
fully qualified.

RegisterHttpMethod Directive

Description: Register non-standard HTTP methods

Syntax: RegisterHttpMethod method [method [...]]
Context: server config

Status: Core

Module: core

HTTP Methods that are not conforming to the relvant RFCs are normally rejected by request processing in Apache
HTTPD. To avoid this, modules can register non-standard HTTP methods they support. The REGISTERHTTPMETHOD
allows to register such methods manually. This can be useful if such methods are forwarded for external processing,
e.g. to a CGI script.

RLimitCPU Directive

Description: Limits the CPU consumption of processes launched by Apache httpd children

Syntax: RLimitCPU seconds|max [seconds|max]
Default: Unset; uses operating system defaults
Context: server config, virtual host, directory, .htaccess
Override: All

Status: Core

Module: core

Takes 1 or 2 parameters. The first parameter sets the soft resource limit for all processes and the second parameter sets
the maximum resource limit. Either parameter can be a number, or max to indicate to the server that the limit should
be set to the maximum allowed by the operating system configuration. Raising the maximum resource limit requires
that the server is running as root or in the initial startup phase.

This applies to processes forked from Apache httpd children servicing requests, not the Apache httpd children them-
selves. This includes CGI scripts and SSI exec commands, but not any processes forked from the Apache httpd parent,
such as piped logs.

CPU resource limits are expressed in seconds per process.

See also

e RLIMITMEM

10.3. APACHE MODULE CORE 427

e RLIMITNPROC

RLimitMEM Directive

Description: Limits the memory consumption of processes launched by Apache httpd children

Syntax: RLimitMEM bytes|max [bytes|max]

Default: Unset; uses operating system defaults
Context: server config, virtual host, directory, .htaccess
Override: All

Status: Core

Module: core

Takes 1 or 2 parameters. The first parameter sets the soft resource limit for all processes and the second parameter sets
the maximum resource limit. Either parameter can be a number, or max to indicate to the server that the limit should
be set to the maximum allowed by the operating system configuration. Raising the maximum resource limit requires
that the server is running as root or in the initial startup phase.

This applies to processes forked from Apache httpd children servicing requests, not the Apache httpd children them-
selves. This includes CGI scripts and SSI exec commands, but not any processes forked from the Apache httpd parent,
such as piped logs.

Memory resource limits are expressed in bytes per process.

See also

e RLIMITCPU
e RLIMITNPROC

RLimitNPROC Directive

Description: Limits the number of processes that can be launched by processes launched by Apache httpd

children
Syntax: RLimitNPROC number|max [number | max]
Default: Unset; uses operating system defaults
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

Takes 1 or 2 parameters. The first parameter sets the soft resource limit for all processes, and the second parameter
sets the maximum resource limit. Either parameter can be a number, or max to indicate to the server that the limit
should be set to the maximum allowed by the operating system configuration. Raising the maximum resource limit
requires that the server is running as root or in the initial startup phase.

This applies to processes forked from Apache httpd children servicing requests, not the Apache httpd children them-
selves. This includes CGI scripts and SSI exec commands, but not any processes forked from the Apache httpd parent,
such as piped logs.

Process limits control the number of processes per user.

:f> Note

If CGI processes are not running under user ids other than the web server user id, this directive
will limit the number of processes that the server itself can create. Evidence of this situation
will be indicated by cannot fork messages in the error_log.

See also

428 CHAPTER 10. APACHE MODULES

e RLIMITMEM
e RLIMITCPU

ScriptInterpreterSource Directive

Description: Technique for locating the interpreter for CGI scripts

Syntax: ScriptInterpreterSource Registry|Registry-Strict|Script
Default: ScriptInterpreterSource Script

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Status: Core

Module: core

Compatibility: ~ Win32 only.

This directive is used to control how Apache httpd finds the interpreter used to run CGI scripts. The default setting is
Script. This causes Apache httpd to use the interpreter pointed to by the shebang line (first line, starting with #!)
in the script. On Win32 systems this line usually looks like:

#!C:/Perl/bin/perl.exe
or, if perl is in the PATH, simply:
#!perl

Setting ScriptInterpreterSource Registry will cause the Windows Registry tree HKEY_CLASSES_ROOT
to be searched using the script file extension (e.g., . p1) as a search key. The command defined by the registry subkey
Shell\ExecCGI\Command or, if it does not exist, by the subkey Shell\Open\Command is used to open the
script file. If the registry keys cannot be found, Apache httpd falls back to the behavior of the Script option.

m Security

Be careful when using ScriptInterpreterSource Registry with SCRIPTALIAS ed
directories, because Apache httpd will try to execute every file within this directory. The
Registry setting may cause undesired program calls on files which are typically not exe-
cuted. For example, the default open command on . htm files on most Windows systems will
execute Microsoft Internet Explorer, so any HTTP request for an . htm file existing within the
script directory would start the browser in the background on the server. This is a good way to
crash your system within a minute or so.

The option Registry-Strict which is new in Apache HTTP Server 2.0 does the same thing as Registry but
uses only the subkey Shell\ExecCGI\Command. The ExecCGI key is not a common one. It must be configured
manually in the windows registry and hence prevents accidental program calls on your system.

SeeRequestTail Directive

Description: Determine if mod_status displays the first 63 characters of a request or the last 63, assuming
the request itself is greater than 63 chars.

Syntax: SeeRequestTail On|Off
Default: SeeRequestTail Off
Context: server config

Status: Core

Module: core

10.3. APACHE MODULE CORE 429

mod_status with ExtendedStatus On displays the actual request being handled. For historical purposes, only 63
characters of the request are actually stored for display purposes. This directive controls whether the 1st 63 characters
are stored (the previous behavior and the default) or if the last 63 characters are. This is only applicable, of course, if
the length of the request is 64 characters or greater.

If Apache httpd is handling GET/disk1l/storage/apache/htdocs/images/imagestorel/food/apples. JpgHTTP/1
mod_status displays as follows:

—

Off (default) GET/disk1/storage/apache/htdocs/images/imagestore 1/food/app
On orage/apache/htdocs/images/imagestore1/food/apples.jpgHTTP1.1

€s

ServerAdmin Directive

Description: Email address that the server includes in error messages sent to the client

Syntax: ServerAdmin email-address|URL
Context: server config, virtual host

Status: Core

Module: core

The SERVERADMIN sets the contact address that the server includes in any error messages it returns to the client. If
the httpd doesn’t recognize the supplied argument as an URL, it assumes, that it’s an email-address and prepends
it withmailto: in hyperlink targets. However, it’s recommended to actually use an email address, since there are a
lot of CGI scripts that make that assumption. If you want to use an URL, it should point to another server under your
control. Otherwise users may not be able to contact you in case of errors.

It may be worth setting up a dedicated address for this, e.g.
ServerAdmin www—admin@foo.example.com

as users do not always mention that they are talking about the server!

ServerAlias Directive

Description: Alternate names for a host used when matching requests to name-virtual hosts

Syntax: ServerAlias hostname [hostname]
Context: virtual host

Status: Core

Module: core

The SERVERALIAS directive sets the alternate names for a host, for use with name-based virtual hosts (p. 125) . The
SERVERALIAS may include wildcards, if appropriate.

<VirtualHost =:80>
ServerName server.example.com
ServerAlias server server2.example.com server2
ServerAlias x.example.com
UseCanonicalName Off
¥ ...
</VirtualHost>

Name-based virtual hosts for the best-matching set of <VIRTUALHOST>s are processed in the order they appear in the
configuration. The first matching SERVERNAME or SERVERALIAS is used, with no different precedence for wildcards
(nor for ServerName vs. ServerAlias).

The complete list of names in the VIRTUALHOST directive are treated just like a (non wildcard) SERVERALIAS.

430 CHAPTER 10. APACHE MODULES

See also

e USECANONICALNAME
e Apache HTTP Server Virtual Host documentation (p. 124)

ServerName Directive

Description: Hostname and port that the server uses to identify itself

Syntax: ServerName [scheme://]domain—-name|ip-address|[:port]
Context: server config, virtual host

Status: Core

Module: core

The SERVERNAME directive sets the request scheme, hostname and port that the server uses to identify itself.

SERVERNAME is used (possibly in conjunction with SERVERALIAS) to uniquely identify a virtual host, when using
name-based virtual hosts (p. 125) .

Additionally, this is used when creating self-referential redirection URLs when USECANONICALNAME is set to a
non-default value.

For example, if the name of the machine hosting the web serveris simple.example. com, but the machine also has
the DNS alias www . example . com and you wish the web server to be so identified, the following directive should
be used:

ServerName www.example.com

The SERVERNAME directive may appear anywhere within the definition of a server. However, each appearance
overrides the previous appearance (within that server).

If no SERVERNAME is specified, the server attempts to deduce the client visible hostname by first asking the operating
system for the system hostname, and if that fails, performing a reverse lookup on an IP address present on the system.

If no port is specified in the SERVERNAME, then the server will use the port from the incoming request. For optimal
reliability and predictability, you should specify an explicit hostname and port using the SERVERNAME directive.

If you are using name-based virtual hosts (p. 125) , the SERVERNAME inside a <VIRTUALHOST> section specifies
what hostname must appear in the request’s Host : header to match this virtual host.

Sometimes, the server runs behind a device that processes SSL, such as a reverse proxy, load balancer or SSL offload
appliance. When this is the case, specify the https:// scheme and the port number to which the clients connect in
the SERVERNAME directive to make sure that the server generates the correct self-referential URLs.

See the description of the USECANONICALNAME and USECANONICALPHYSICALPORT directives for settings which
determine whether self-referential URLs (e.g., by the MOD_DIR module) will refer to the specified port, or to the port
number given in the client’s request.

m Failure to set SERVERNAME to a name that your server can resolve to an IP address will result
in a startup warning. httpd will then use whatever hostname it can determine, using the
system’s hostname command. This will almost never be the hostname you actually want.

httpd: Could not reliably determine the server’s fully
qualified domain name, using rocinante.local for

ServerName

See also

10.3. APACHE MODULE CORE 431

Issues Regarding DNS and Apache HTTP Server (p. 121)
Apache HTTP Server virtual host documentation (p. 124)

USECANONICALNAME

e USECANONICALPHYSICALPORT
SERVERALIAS

ServerPath Directive

Description: Legacy URL pathname for a name-based virtual host that is accessed by an incompatible

browser
Syntax: ServerPath URL-path
Context: virtual host
Status: Core
Module: core

The SERVERPATH directive sets the legacy URL pathname for a host, for use with name-based virtual hosts (p. 124) .

See also

e Apache HTTP Server Virtual Host documentation (p. 124)

ServerRoot Directive

Description: Base directory for the server installation

Syntax: ServerRoot directory-path
Default: ServerRoot /usr/local/apache
Context: server config

Status: Core

Module: core

The SERVERROOT directive sets the directory in which the server lives. Typically it will contain the subdirecto-
ries conf/ and 1logs/. Relative paths in other configuration directives (such as INCLUDE or LOADMODULE, for
example) are taken as relative to this directory.

ServerRoot "/home/httpd"

The default location of SERVERROOT may be modified by using the ——prefix argument to configure (p. 307),
and most third-party distributions of the server have a different default location from the one listed above.

See also

e the —d option to httpd (p. 27)
o the security tips (p. 364) for information on how to properly set permissions on the SERVERROOT

ServerSignature Directive

Description: Configures the footer on server-generated documents

Syntax: ServerSignature On|Off|EMail
Default: ServerSignature Off

Context: server config, virtual host, directory, .htaccess
Override: All

Status: Core

Module: core

432 CHAPTER 10. APACHE MODULES

The SERVERSIGNATURE directive allows the configuration of a trailing footer line under server-generated documents
(error messages, MOD_PROXY ftp directory listings, MOD_INFO output, ...). The reason why you would want to enable
such a footer line is that in a chain of proxies, the user often has no possibility to tell which of the chained servers
actually produced a returned error message.

The Off setting, which is the default, suppresses the footer line (and is therefore compatible with the behavior of
Apache-1.2 and below). The On setting simply adds a line with the server version number and SERVERNAME of the
serving virtual host, and the EMail setting additionally creates a "mailto:" reference to the SERVERADMIN of the
referenced document.

After version 2.0.44, the details of the server version number presented are controlled by the SERVERTOKENS direc-
tive.

See also

e SERVERTOKENS

ServerTokens Directive

Description: Configures the Server HTTP response header

Syntax: ServerTokens Major|Minor|Min[imal] |Prod[uctOnly] |OS|Full
Default: ServerTokens Full

Context: server config

Status: Core

Module: core

This directive controls whether Server response header field which is sent back to clients includes a description of
the generic OS-type of the server as well as information about compiled-in modules.

ServerTokens Full (or not specified) Server sends (e.g.): Server: Apache/2.4.2 (Unix)
PHP/4.2.2 MyMod/1.2

ServerTokens Prod[uctOnly] Serversends (e.g.): Server: Apache
ServerTokens Major Server sends (e.g.): Server: Apache/2
ServerTokens Minor Server sends (e.g.): Server: Apache/2.4
ServerTokens Min[imal] Server sends (e.g.): Server: Apache/2.4.2

ServerTokens OS Server sends (e.g.): Server: Apache/2.4.2 (Unix)

This setting applies to the entire server, and cannot be enabled or disabled on a virtualhost-by-virtualhost basis.

After version 2.0.44, this directive also controls the information presented by the SERVERSIGNATURE directive.

iSetting SERVERTOKENS to less than minimal is not recommended because it makes it more
difficult to debug interoperational problems. Also note that disabling the Server: header does
nothing at all to make your server more secure. The idea of "security through obscurity" is a
myth and leads to a false sense of safety.

See also

e SERVERSIGNATURE

10.3. APACHE MODULE CORE 433

SetHandler Directive

Description: Forces all matching files to be processed by a handler
Syntax: SetHandler handler-name|none|expression
Context: server config, virtual host, directory, .htaccess

Override: Filelnfo

Status: Core

Module: core

Compatibility: 2.5 and later

When placed into an . htaccess file or a <DIRECTORY> or <LOCATION> section, this directive forces all match-
ing files to be parsed through the handler (p. 108) given by handler-name. For example, if you had a directory you
wanted to be parsed entirely as imagemap rule files, regardless of extension, you might put the following into an
.htaccess file in that directory:

SetHandler imap-file

Another example: if you wanted to have the server display a status report whenever a URL of
http://servername/status was called, you might put the following into httpd. conf:

<Location "/status">
SetHandler server-status
</Location>

You could also use this directive to configure a particular handler for files with a particular file extension. For example:

<FilesMatch "\.phpS$">
SetHandler application/x-httpd-php
</FilesMatch>

String-valued expressions can be used to reference per-request variables, including backreferences to named regular
expressions:

<LocationMatch “/app/ (?2<sub>["/1+)/>
SetHandler "proxy:unix:/var/run/app_%{env:MATCH_sub}.sock|fcgi://localhost:8080"
</LocationMatch>

You can override an earlier defined SETHANDLER directive by using the value None.

i Note

Because SETHANDLER overrides default handlers, normal behavior such as handling of URLs
ending in a slash (/) as directories or index files is suppressed.

See also

e ADDHANDLER

SetInputFilter Directive

Description: ~ Sets the filters that will process client requests and POST input

Syntax: SetInputFilter filter[;filter...]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo

Status: Core

Module: core

434 CHAPTER 10. APACHE MODULES

The SETINPUTFILTER directive sets the filter or filters which will process client requests and POST input when
they are received by the server. This is in addition to any filters defined elsewhere, including the ADDINPUTFILTER
directive.

If more than one filter is specified, they must be separated by semicolons in the order in which they should process the
content.

See also

e Filters (p. 110) documentation

SetOutputFilter Directive

Description: Sets the filters that will process responses from the server

Syntax: SetOutputFilter filter([;filter...]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo

Status: Core

Module: core

The SETOUTPUTFILTER directive sets the filters which will process responses from the server before they are sent to
the client. This is in addition to any filters defined elsewhere, including the ADDOUTPUTFILTER directive.

For example, the following configuration will process all files in the /www/data/ directory for server-side includes.
<Directory "/www/data/">

SetOutputFilter INCLUDES
</Directory>

If more than one filter is specified, they must be separated by semicolons in the order in which they should process the
content.

See also

e Filters (p. 110) documentation

TimeOut Directive

Description: Amount of time the server will wait for certain events before failing a request

Syntax: TimeOut seconds
Default: TimeOut 60

Context: server config, virtual host
Status: Core

Module: core

The TIMEOUT directive defines the length of time Apache httpd will wait for I/O in various circumstances:

e When reading data from the client, the length of time to wait for a TCP packet to arrive if the read buffer is
empty.

For initial data on a new connection, this directive doesn’t take effect until after any configured ACCEPTFILTER
has passed the new connection to the server.

e When writing data to the client, the length of time to wait for an acknowledgement of a packet if the send buffer
is full.

e In MOD_CGI and MOD_CGID, the length of time to wait for output from a CGI script.

10.3. APACHE MODULE CORE 435

e In MOD_EXT_FILTER, the length of time to wait for output from a filtering process.
e In MOD_PROXY, the default timeout value if PROXYTIMEOUT is not configured.

TraceEnable Directive

Description: Determines the behavior on TRACE requests

Syntax: TraceEnable [on|off]|extended]
Default: TraceEnable on

Context: server config, virtual host

Status: Core

Module: core

This directive overrides the behavior of TRACE for both the core server and MOD_PROXY. The default TraceEnable
on permits TRACE requests per RFC 2616, which disallows any request body to accompany the request.
TraceEnable off causes the core server and MOD_PROXY to return a 405 (Method not allowed) error to the
client.

Finally, for testing and diagnostic purposes only, request bodies may be allowed using the non-compliant
TraceEnable extended directive. The core (as an origin server) will restrict the request body to 64k (plus
8k for chunk headers if Transfer—-Encoding: chunked isused). The core will reflect the full headers and all
chunk headers with the response body. As a proxy server, the request body is not restricted to 64k.

i Note

Despite claims to the contrary, TRACE is not a security vulnerability, and there is no viable
reason for it to be disabled. Doing so necessarily makes your server noncompliant.

UnDefine Directive

Description: Undefine the existence of a variable

Syntax: UnDefine parameter-name
Context: server config, virtual host

Status: Core

Module: core

Undoes the effect of a DEFINE or of passing a —D argument to httpd.

This directive can be used to toggle the use of <IFDEFINE> sections without needing to alter —D arguments in any
startup scripts.

While this directive is supported in virtual host context, the changes it makes are visible to any later configuration
directives, beyond any enclosing virtual host.

UseCanonicalName Directive

Description: Configures how the server determines its own name and port

Syntax: UseCanonicalName On|Off |DNS
Default: UseCanonicalName Off

Context: server config, virtual host, directory
Status: Core

Module: core

In many situations Apache httpd must construct a self-referential URL — that is, a URL that refers back to the same
server. With UseCanonicalName On Apache httpd will use the hostname and port specified in the SERVERNAME
directive to construct the canonical name for the server. This name is used in all self-referential URLs, and for the
values of SERVER_NAME and SERVER_PORT in CGIs.

436 CHAPTER 10. APACHE MODULES

With UseCanonicalName Off Apache httpd will form self-referential URLs using the hostname and port sup-
plied by the client if any are supplied (otherwise it will use the canonical name, as defined above). These values are
the same that are used to implement name-based virtual hosts (p. 125) and are available with the same clients. The
CGI variables SERVER_NAME and SERVER_PORT will be constructed from the client supplied values as well.

An example where this may be useful is on an intranet server where you have users connecting to the ma-
chine using short names such as www. You’ll notice that if the users type a shortname and a URL which is
a directory, such as http://www/splat, without the trailing slash, then Apache httpd will redirect them to
http://www.example.com/splat/. If you have authentication enabled, this will cause the user to have to
authenticate twice (once for www and once again for www.example.com — see the FAQ on this subject for more
information’). But if USECANONICALNAME is set Of £, then Apache httpd will redirect to http: //www/splat/.

There is a third option, UseCanonicalName DNS, which is intended for use with mass IP-based virtual hosting
to support ancient clients that do not provide a Host : header. With this option, Apache httpd does a reverse DNS
lookup on the server IP address that the client connected to in order to work out self-referential URLSs.

m Warning

If CGIs make assumptions about the values of SERVER_NAME, they may be broken by this
option. The client is essentially free to give whatever value they want as a hostname. But if
the CGI is only using SERVER_NAME to construct self-referential URLSs, then it should be just
fine.

See also

e USECANONICALPHYSICALPORT
e SERVERNAME

e LISTEN

UseCanonicalPhysicalPort Directive

Description: Configures how the server determines its own port

Syntax: UseCanonicalPhysicalPort On|Off
Default: UseCanonicalPhysicalPort Off
Context: server config, virtual host, directory

Status: Core

Module: core

In many situations Apache httpd must construct a self-referential URL — that is, a URL that refers back to the same
server. With UseCanonicalPhysicalPort On, Apache httpd will, when constructing the canonical port for
the server to honor the USECANONICALNAME directive, provide the actual physical port number being used by this
request as a potential port. With UseCanonicalPhysicalPort Off, Apache httpd will not ever use the actual
physical port number, instead relying on all configured information to construct a valid port number.

"http://wiki.apache.org/httpd/FAQ#Why_does_Apache _ask_for_my_password_twice_before_serving_a_file.3F

http://wiki.apache.org/httpd/FAQ#Why_does_Apache_ask_for_my_password_twice_before_serving_a_file.3F

10.3. APACHE MODULE CORE 437

i Note

The ordering of the lookup when the physical port is used is as follows:

UseCanonicalName On 1. Port provided in SERVERNAME
2. Physical port
3. Default port

UseCanonicalName Off | DNS 1. Parsed port from Host : header

2. Physical port

3. Port provided in SERVERNAME

4. Default port
With UseCanonicalPhysicalPort Off, the physical ports are removed from the or-
dering.

See also

e USECANONICALNAME
e SERVERNAME
e LISTEN

VirtualHost Directive

Description: Contains directives that apply only to a specific hostname or IP address

Syntax: <VirtualHost addr[:port] [addr[:port]] ...>
</VirtualHost>

Context: server config

Status: Core

Module: core

<VIRTUALHOST> and </VirtualHost> are used to enclose a group of directives that will apply only to a par-
ticular virtual host. Any directive that is allowed in a virtual host context may be used. When the server receives a
request for a document on a particular virtual host, it uses the configuration directives enclosed in the <VIRTUAL-
HoOST> section. Addr can be any of the following, optionally followed by a colon and a port number (or *):

e The IP address of the virtual host;
o A fully qualified domain name for the IP address of the virtual host (not recommended);
e The character =, which acts as a wildcard and matches any IP address.

e The string .default., which is an alias for x

<VirtualHost 10.1.2.3:80>
ServerAdmin webmaster@host.example.com
DocumentRoot "/www/docs/host.example.com"
ServerName host.example.com
ErrorLog "logs/host.example.com-error_log"
TransferLog "logs/host.example.com-access_log"
</VirtualHost>

IPv6 addresses must be specified in square brackets because the optional port number could not be determined other-
wise. An IPv6 example is shown below:

438 CHAPTER 10. APACHE MODULES

<VirtualHost [2001:db8::a00:20ff:fea7:ccea] :80>
ServerAdmin webmaster@host.example.com
DocumentRoot "/www/docs/host.example.com"
ServerName host.example.com
ErrorLog "logs/host.example.com-error_log"
TransferLog "logs/host.example.com—access_log"
</VirtualHost>

Each Virtual Host must correspond to a different IP address, different port number, or a different host name for the
server, in the former case the server machine must be configured to accept IP packets for multiple addresses. (If
the machine does not have multiple network interfaces, then this can be accomplished with the i fconfig alias
command — if your OS supports it).

i Note

The use of <VIRTUALHOST> does not affect what addresses Apache httpd listens on. You
may need to ensure that Apache httpd is listening on the correct addresses using LISTEN.

A SERVERNAME should be specified inside each <VIRTUALHOST> block. If it is absent, the SERVERNAME from
the "main" server configuration will be inherited.

When a request is received, the server first maps it to the best matching <VIRTUALHOST> based on the local 1P
address and port combination only. Non-wildcards have a higher precedence. If no match based on IP and port occurs
at all, the "main" server configuration is used.

If multiple virtual hosts contain the best matching IP address and port, the server selects from these virtual hosts the
best match based on the requested hostname. If no matching name-based virtual host is found, then the first listed
virtual host that matched the IP address will be used. As a consequence, the first listed virtual host for a given IP
address and port combination is the default virtual host for that IP and port combination.

m Security

See the security tips (p. 364) document for details on why your security could be compromised
if the directory where log files are stored is writable by anyone other than the user that starts
the server.

See also

Apache HTTP Server Virtual Host documentation (p. 124)
Issues Regarding DNS and Apache HTTP Server (p. 121)
Setting which addresses and ports Apache HTTP Server uses (p. 88)

How <Directory>, <Location> and <Files> sections work (p. 35) for an explanation of how these different
sections are combined when a request is received

Warning Directive

Description: Warn from configuration parsing with a custom message
Syntax: Warning message

Context: server config, virtual host, directory, .htaccess

Status: Core

Module: core

Compatibility: 2.5 and later

If an issue can be detected from within the configuration, this directive can be used to generate a custom warning
message. The configuration parsing is not halted. The typical use is to check whether some user define options are set,
and warn if not.

10.3. APACHE MODULE CORE 439

Example
tell when ReverseProxy is not set
<IfDefine !ReverseProxy>
Warning "reverse proxy is not started, hope this is okay!"
</IfDefine>

<IfDefine ReverseProxy>
define custom proxy configuration
</IfDefine>

440 CHAPTER 10. APACHE MODULES

10.4 Apache Module mod_access_compat

Description: Group authorizations based on host (name or IP address)

Status: Extension

Moduleldentifier: access_compat_module

SourceFile: mod_access_compat.c

Compatibility: Available in Apache HTTP Server 2.3 as a compatibility module with previous versions

of Apache httpd 2.x. The directives provided by this module have been deprecated by
the new authz refactoring. Please see MOD_AUTHZ_HOST

Summary

The directives provided by MOD_ACCESS_COMPAT are used in <DIRECTORY>, <FILES>, and <LOCATION> sec-
tions as well as .htaccess (p. 380) files to control access to particular parts of the server. Access can be
controlled based on the client hostname, IP address, or other characteristics of the client request, as captured in envi-
ronment variables (p. 92) . The ALLOW and DENY directives are used to specify which clients are or are not allowed
access to the server, while the ORDER directive sets the default access state, and configures how the ALLOW and
DENY directives interact with each other.

Both host-based access restrictions and password-based authentication may be implemented simultaneously. In that
case, the SATISFY directive is used to determine how the two sets of restrictions interact.

m Note

The directives providled by MOD_ACCESS_COMPAT have been deprecated by
MOD_AUTHZ_HOST. Mixing old directives like ORDER, ALLOW or DENY with new
ones like REQUIRE is technically possible but discouraged. This module was created to
support configurations containing only old directives to facilitate the 2.4 upgrade. Please
check the upgrading (p. 2) guide for more information.

In general, access restriction directives apply to all access methods (GET, PUT, POST, etc). This is the desired behavior
in most cases. However, it is possible to restrict some methods, while leaving other methods unrestricted, by enclosing
the directives in a <LIMIT> section.

iMerging of configuration sections
When any directive provided by this module is used in a new configuration section, no direc-
tives provided by this module are inherited from previous configuration sections.

Directives

o Allow
e Deny

e Order
o Satisfy

See also

e REQUIRE
e MOD_AUTHZ_HOST

e MOD_AUTHZ_CORE

10.4. APACHE MODULE MOD_ACCESS_-COMPAT 441

Allow Directive

Description: Controls which hosts can access an area of the server

Syntax: Allow from alllhost|env=[!]env-variable [host|env=[!]env-variable]
Context: directory, .htaccess

Override: Limit

Status: Extension

Module: mod_access_compat

The ALLOW directive affects which hosts can access an area of the server. Access can be controlled by hostname, IP
address, IP address range, or by other characteristics of the client request captured in environment variables.

The first argument to this directive is always from. The subsequent arguments can take three different forms. If
Allow from all is specified, then all hosts are allowed access, subject to the configuration of the DENY and
ORDER directives as discussed below. To allow only particular hosts or groups of hosts to access the server, the host
can be specified in any of the following formats:

A (partial) domain-name Allow from example.org
Allow from .net example.edu

Hosts whose names match, or end in, this string are allowed access. Only complete components are matched, so
the above example will match foo.example. org but it will not match fooexample.org. This configura-
tion will cause Apache httpd to perform a double DNS lookup on the client IP address, regardless of the setting
of the HOSTNAMELOOKUPS directive. It will do a reverse DNS lookup on the IP address to find the associated
hostname, and then do a forward lookup on the hostname to assure that it matches the original IP address. Only
if the forward and reverse DNS are consistent and the hostname matches will access be allowed.

A full IP address Allow from 10.1.2.3
Allow from 192.168.1.104 192.168.1.205
An IP address of a host allowed access
A partial IP address Allow from 10.1
Allow from 10 172.20 192.168.2
The first 1 to 3 bytes of an IP address, for subnet restriction.

A network/netmask pair Allow from 10.1.0.0/255.255.0.0

A network a.b.c.d, and a netmask w.x.y.z. For more fine-grained subnet restriction.

A network/nnn CIDR specification A11ow from 10.1.0.0/16

Similar to the previous case, except the netmask consists of nnn high-order 1 bits.

Note that the last three examples above match exactly the same set of hosts.

IPv6 addresses and IPv6 subnets can be specified as shown below:

Allow from 2001:db8::a00:20ff:fea7:ccea
Allow from 2001:db8::a00:20ff:fea7:ccea/10

The third format of the arguments to the ALLOW directive allows access to the server to be controlled based on the exis-
tence of an environment variable (p. 92) . When Allow from env=env-variable is specified, then the request
is allowed access if the environment variable env-variable exists. When Allow from env=!env-variableis
specified, then the request is allowed access if the environment variable env-variable doesn’t exist. The server pro-
vides the ability to set environment variables in a flexible way based on characteristics of the client request using the
directives provided by MOD_SETENVIF. Therefore, this directive can be used to allow access based on such factors as
the clients User—Agent (browser type), Referer, or other HTTP request header fields.

442 CHAPTER 10. APACHE MODULES

SetEnvIf User—-Agent “KnockKnock/2\.0 let_me_in
<Directory "/docroot">

Order Deny,Allow

Deny from all

Allow from env=let_me_in
</Directory>

In this case, browsers with a user-agent string beginning with KnockKnock /2.0 will be allowed access, and all

others will be denied.

:/)Merging of configuration sections
When any directive provided by this module is used in a new configuration section, no direc-
tives provided by this module are inherited from previous configuration sections.

Deny Directive

Description: Controls which hosts are denied access to the server

Syntax: Deny from all|host|env=[!]env-variable [host]|env=[!]env-variable]
Context: directory, .htaccess

Override: Limit

Status: Extension

Module: mod_access_compat

This directive allows access to the server to be restricted based on hostname, IP address, or environment variables.
The arguments for the DENY directive are identical to the arguments for the ALLOW directive.

Order Directive

Description: Controls the default access state and the order in which ALLOW and DENY are evaluated.

Syntax: Order ordering
Default: Order Deny,Allow
Context: directory, .htaccess
Override: Limit

Status: Extension

Module: mod_access_compat

The ORDER directive, along with the ALLOW and DENY directives, controls a three-pass access control system. The
first pass processes either all ALLOW or all DENY directives, as specified by the ORDER directive. The second pass
parses the rest of the directives (DENY or ALLOW). The third pass applies to all requests which do not match either of
the first two.

Note that all ALLOW and DENY directives are processed, unlike a typical firewall, where only the first match is
used. The last match is effective (also unlike a typical firewall). Additionally, the order in which lines appear in the
configuration files is not significant — all ALLOW lines are processed as one group, all DENY lines are considered as
another, and the default state is considered by itself.

Ordering is one of:

Allow,Deny First, all ALLOW directives are evaluated; at least one must match, or the request is rejected. Next, all
DENY directives are evaluated. If any matches, the request is rejected. Last, any requests which do not match
an ALLOW or a DENY directive are denied by default.

Deny,Allow First, all DENY directives are evaluated; if any match, the request is denied unless it also matches an
ALLOW directive. Any requests which do not match any ALLOW or DENY directives are permitted.

10.4. APACHE MODULE MOD_ACCESS_-COMPAT 443

Mutual-failure This order has the same effect as Order Allow, Deny and is deprecated in its favor.

Keywords may only be separated by a comma; no whitespace is allowed between them.

Match Allow,Deny result Deny,Allow result

Match Allow only Request allowed Request allowed

Match Deny only Request denied Request denied

No match Default to second directive: Denied Default to second directive: Allowed
Match both Allow & Deny Final match controls: Denied Final match controls: Allowed

In the following example, all hosts in the example.org domain are allowed access; all other hosts are denied access.

Order Deny,Allow
Deny from all
Allow from example.org

In the next example, all hosts in the example.org domain are allowed access, except for the hosts which are in the
foo.example.org subdomain, who are denied access. All hosts not in the example.org domain are denied access because
the default state is to DENY access to the server.

Order Allow,Deny
Allow from example.org
Deny from foo.example.org

On the other hand, if the ORDER in the last example is changed to Deny, A11low, all hosts will be allowed access.
This happens because, regardless of the actual ordering of the directives in the configuration file, the Allow from
example.org will be evaluated last and will override the Deny from foo.example.org. All hosts not in the
example.org domain will also be allowed access because the default state is ALLOW.

The presence of an ORDER directive can affect access to a part of the server even in