Advanced WebApplications
using

— (O C_(OCI1

Reinhard Potz, Apache Cocoon Comitter

reinhard@apache.org
http://www.poetz.cc

CocoonDay, 2003-11-18, Vienna

Goals

= give an overview how to implement Web Applications
with Cocoon2

= show design patterns
= focus on the Cocoon Control Flow
= no details on related aspects but hints

= after this presentation you should have a starting point
for your first application using the Cocoon Control
Flow

poetz.cc.

Demo application

% Cocoon Day - Advanced Web Applications - Mozilla

@ @ @ Q |% hitp:ifwrpo:B0B0NIdemofwelcorne html
—| i Q

b | »

Book your hotel room (demo application)

0SB ® |

==

poetz.cc.

Thinking in layers ...

goals

reached by

easily maintainable

reuseable

.. separation of

data model
view layer

application flow

enforces

clear contracts

poetz.cc.

Page flow

city |

Summary

name: Reinhard Pétz]

age: 26 h I
email: reinhard@apache.org o e
yourhotel Novotel Vienna West in Am Auhof, 1140 Wien

'our hotel
restart demo i +

personal data

| 2 & 3 & [oome E=FIP +

user older user younger
than 18 | \397 than 18
car rentals
Y

»| summary

poetz.cc

Data model

=

database

poetz.cc.

View layer

¥ Source of: http:fiwrpo:8080/demo/1e5a2?B56552b226f54355b4322 1685a12366b4b78_contZcityld=1 - . M[=]E3
. File Edit View Help

[»

<txr>

<td>Hilton Vienna Danube</td>
<td>»Handelskal 269, 1020 Wlien</td>
<tdr<a href="5<00&682074782012377a857a7c]

</tr>

<txr:>

<td>Novotel Vienna West</td:>
<td>zAm Auhof, 1140 Wien</td:>
<tdr<a href="5¢c00638207473833512377eB8L 727

[Select your Hotel - Mozilla (o] x]
</tr>

a @oo @ O S_hitpfwrpo 6080/demal2d2e0308380cd4 d0BGE1 740437 a4b2a4 25414 11.cont T cit/ld=1 &, Search ‘fiiso
» v

]

<tr> . .
o Hotels in Vienna

Please select your favorite hotel:

name address
Hilton Vienna Danube Handelskai 269, 1020 Wien select
| Novotel Vienna West | Am Auhof, 1140 Wien select

Ibis Wien Messe LassallestralRe 7a, 1020 Wien select

WE S B m | pome =P

poetz.cc.

Implementing the Flow layer

= distributed over all pages =

page flow is embedded in the hard wired links between the pages
(often used in PHP/ASP/JSP applications)

+ hard to understand spathetti code, not maintainable, sideeffects

= MVC (model view controller)

the controller is used to process requests and to select the views
(e.g. implemented by the Struts framework or solutions based on Actions in
Cocoon)

+ application is fragemented and often it is difficult to understand the logic
+ explicit state handling

= MVC+

page flow is described as a sequential program using continuations
(e.g. Cocoon Advanced Control Flow — using Flowscript)

+ very easy to understand the page flow

+ implicit state handling (continuations)

poetz.cc.

Flowscript — Integration into the Cocoon
world 1 ==

=

—L |

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
<map: flow "jJavascript">
<map:script "flow.js"/>
</map: flow>
<map:pipelines>
<map:pipeline>
<map:match pattern="booking.html">
<map:call "booking" />
</map:match>
</map:pipeline>
</map:sitemap>

poetz.cc.

Flowscript — Example (flow.js)

=
=

 E—— |

function booking() | {

var cities = getAllCities();
cocoon.sendPageAndWaitk "screens/destination.html",

{

cities : cities
}
) ;

var city = getCity(cocoon.request.cityId, cities);

var hotels = city.getHotels();
cocoon.sendPageAndWaitk "screens/hotellist.html",

{
cityName : city.getName(),

hotels : hotels

}
poetz.cc

Continuations ... what? [1; =

function booking () {
I

var cities = getAllCities() ;
cocoon.sendPageAndWait ("screens/destination.html”,

{

cities : cities
}
) ;
var city = getCity(cocoon.request.cityId, cities);

var hotels = city.getHotels() ;
cocoon.sendPageAndWait("screens/hotellist.html",

{

—

cityName : city.getName (),
hotels : hotels

poetz.cc

Continuations ... what? 2

= Continuations ...

4

L 2

know where the program execution stopped

are tied to a stack (which is shared between all
continuations)

contain local variables

are created after cocoon.sendPageAndWait(...)
have an unique identifier

are light-weight Java objects

poetz.cc.

Flowscript — Integration into the Cocoon

world ,; ==
% Personal data - Mozilla S e—

o0id21e7e/3854414 2580352115948 7 76832304 3.cont

| [@k Sear

| ©Q @Q @ Q | hitp:ifwrpo:B0B0Ider
|

b ¥

Personal data

VALIF rama Foinhard

+ Please enter the day of your arrival!

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">

<map:pipelines>
<map:pipeline>

<map:match pattern="*.cont">

<map:call
</map:match>
</map:pipeline>
</map:sitemap>

n{l}n/>

poetz.cc.

Continuations ... what? 3; —

function booking () {
I

var cities = getAllCities() ;
cocoon.sendPageAndWait ("screens/destination.html",

{
cities : cities
}
) ;

- var city = getCity(cocoon.request.cityId, cities);

var hotels = city.getHotels() ;
cocoon.sendPageAndWait("screens/hotellist.html",

{
cityName : city.getName (),

hotels : hotels

poetz.cc

Flowscript supports ...

==

= FOM (flow object model)

+ access to the environment (request, response, session, context, sitemap
parameters)

+ access to the framework (Avalon components, logging framework)

+ page flow control (cocoon.sendPage(), cocoon.sendPageAndWait(),
cocoon.redirectTo()

+ access to the continuations' tree

= Java Life Connect

+ Access all Java classes available in the Cocoon classloader:
var map = new Packages.java.util.HashMap() ;

poetz.cc.

Why Javascript?

= known by many developers worldwide

= simpler than Java but nearly as powerful
= support for continuations

= faster roundtrips (save & reload)

= integrates well (see Live-Connect)

= not verbose

poetz.cc.

Integrate your backend

&5

= because of the highly flexible architecture
everything that Cocoon/Java/J2EE world
offers is possible, e.g.

+ XML documents (e.g. generated by Cocoon pipelines)

« EIJB

+ Beans via O/R mapping tools

= the demo application uses OJB (PB API) — the Apache

O/R mapping tool
(see http://db.apache.og/ojb)

poetz.cc.

View Layer - Details T

= Power of Cocoon pipelines
provided by Cocoon pipelines (full power of Cocoon multi-client/multi-
user/multi-language support/caching)

= Templating
there are a few generators that are ,flow aware"
recommended templating approach:
JXTemplateGenerator/Transformer

= Inversion of Control
the view layer doesn't know where to find data (operates on JavaBeans
or XML-fragments) — data objects are passed by the flow layer

poetz.cc.

o X
S

Passing Objects to the View —

function booking() ({ ol

var cities = getAllCities() ;
cocoon.sendPageAndWait ("screens/destination.html”,

{
cities : cities bava.util.Collecticd
}
) ;

var city = getCity(cocoon.request.cityId, cities);

var hotels = city.getHotels() ;
cocoon.sendPageAndWait("screens/hotellist.html",

{

cityName : city.getName (),
hotels : hotels

poetz.cc

JXTemplateGenerator

<map:sitemap "http://apache.org/cocoon/sitemap/1.0">
<map :components>
<map:generators "file">
<map:generator
"content"
"sitemap.generator. jxpath"
Hij

"org.apache.cocoon.generation.JXTemplateGenerator" />
</map:generators>
</map : components>
<map:pipelines>

<map:pipeline "true">
<map:match "screens/*.html">
<map:generate "yx" "screens/{1l}.xml" />
<map:transform "stylesheets/global.xsl" />
<map:serialize "html" />

</map:match>
</map:pipeline>
</map:pipelines>
</map:sitemap/>

poetz.cc

JXTemplateGenerator e

= access to the FOM objects
= support for JEXL and JXPath expressions

= very fast

<form action="${continuation.id}.cont">

<jx:forEach "city" "${cities}">
<option "${city.id}">${city.name}</option>
</jx:forEach>
</select>

<input type="submit" wvalue="Make your choice"/>
</form>

poetz.cc.

Cocoon Forms (aka woody)

= get rid of all the explicit mappings from request
parameters to beans (which could be harmful!)

= validation, strong datatyping, internationalization
(i18n)

= following a widget approach
= special API for flowscript integration

= the community solution (will deprecate all former one-
man shows like JXForms, XMLFormes, ...)

= expect a release 2004/Q1 - Q2
(personal opinoin of the author of this presentation ;-)

poetz.cc.

Conclusion

= easily maintainable page flow because of
clean designs contracts and no fragmentation
(find out in minutes what a web applications does!)

= Implicit state management
(you don't have to find out where the browser is — you
always know it!)

= no back button

= no trade-offs

broblem

petween fast development cycles/rapid

prototyping anc

clean designs

= perfectly fits into the Cocoon and J2EE world

poetz.cc.

