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Goals

 give an overview how to implement Web Applications 
with Cocoon2

 show design patterns
 focus on the Cocoon Control Flow
 no details on related aspects but hints
 after this presentation you should have a starting point 

for your first application using the Cocoon Control 
Flow



Demo application



Thinking in layers ...

 easily maintainable
 reuseable

clear contracts

 ... separation of

 data model
 view layer
 application flow

goals

reached by

enforces
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View layer



Implementing the Flow layer

 distributed over all pages 
page flow is embedded in the hard wired links between the pages 
(often used in PHP/ASP/JSP applications)

 hard to understand spathetti code, not maintainable, sideeffects

 MVC (model view controller)
the controller is used to process requests and to select the views 
(e.g. implemented by the Struts framework or solutions based on Actions in 
Cocoon)

 application is fragemented and often it is difficult to understand the logic

 explicit state handling

 MVC+ 
page flow is described as a sequential program using continuations
(e.g. Cocoon Advanced Control Flow – using Flowscript)

 very easy to understand the page flow

 implicit state handling (continuations)



Flowscript – Integration into the Cocoon 
world [1]

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
  <map:flow language="javascript">
    <map:script src="flow.js"/>
  </map:flow>  
  <map:pipelines>
    <map:pipeline>    
      <map:match pattern="booking.html">
        <map:call function="booking"/>
      </map:match>   
    </map:pipeline>
</map:sitemap>



Flowscript – Example (flow.js)

function booking() {
...
  var cities = getAllCities();
  cocoon.sendPageAndWait( "screens/destination.html", 
    {
       cities : cities
    } 
  );
  var city = getCity( cocoon.request.cityId, cities );
  var hotels = city.getHotels();
  cocoon.sendPageAndWait( "screens/hotellist.html", 
    {
      cityName : city.getName(),
      hotels   : hotels
    } 
   );
...
}



Continuations ... what? [1]

function booking() {
...
  var cities = getAllCities();
  cocoon.sendPageAndWait( "screens/destination.html", 
    {
       cities : cities
    } 
  );
  var city = getCity( cocoon.request.cityId, cities );
  var hotels = city.getHotels();
  cocoon.sendPageAndWait( "screens/hotellist.html", 
    {
      cityName : city.getName(),
      hotels   : hotels
    } 
   );
...
}



Continuations ... what? [2]

 Continuations ...
 know where the program execution stopped
 are tied to a stack (which is shared between all 

continuations)
 contain local variables
 are created after cocoon.sendPageAndWait(...)
 have an unique identifier
 are light-weight Java objects



Flowscript – Integration into the Cocoon 
world [1]

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
  <map:pipelines>
    <map:pipeline>    
      <map:match pattern="*.cont">
        <map:call continuation="{1}"/>
      </map:match>   
    </map:pipeline>
</map:sitemap>



Continuations ... what? [3]

function booking() {
...
  var cities = getAllCities();
  cocoon.sendPageAndWait( "screens/destination.html", 
    {
       cities : cities
    } 
  );
  var city = getCity( cocoon.request.cityId, cities );
  var hotels = city.getHotels();
  cocoon.sendPageAndWait( "screens/hotellist.html", 
    {
      cityName : city.getName(),
      hotels   : hotels
    } 
   );
...
}



Flowscript supports ...

 FOM (flow object model)
 access to the environment (request, response, session, context, sitemap 

parameters)

 access to the framework (Avalon components, logging framework)

 page flow control (cocoon.sendPage(), cocoon.sendPageAndWait(), 
cocoon.redirectTo()

 access to the continuations' tree

 Java Life Connect
 Access all Java classes available in the Cocoon classloader:

var map = new Packages.java.util.HashMap();



Why Javascript?

 known by many developers worldwide
 simpler than Java but nearly as powerful
 support for continuations
 faster roundtrips (save & reload)
 integrates well (see Live-Connect)
 not verbose



Integrate your backend

 because of the highly flexible architecture
everything that Cocoon/Java/J2EE world
offers is possible, e.g.

 XML documents (e.g. generated by Cocoon pipelines)

 EJB

 Beans via O/R mapping tools

 the demo application uses OJB (PB API) – the Apache 
O/R mapping tool
(see http://db.apache.og/ojb)



View Layer - Details

 Power of Cocoon pipelines
provided by Cocoon pipelines (full power of Cocoon multi-client/multi-
user/multi-language support/caching)

 Templating
there are a few generators that are „flow aware“
recommended templating approach: 
JXTemplateGenerator/Transformer

 Inversion of Control
the view layer doesn't know where to find data (operates on JavaBeans 
or XML-fragments) – data objects are passed by the flow layer



Passing Objects to the View

function booking() {
...
  var cities = getAllCities();
  cocoon.sendPageAndWait( "screens/destination.html", 
    {
       cities : cities
    } 
  );
  var city = getCity( cocoon.request.cityId, cities );
  var hotels = city.getHotels();
  cocoon.sendPageAndWait( "screens/hotellist.html", 
    {
      cityName : city.getName(),
      hotels   : hotels
    } 
   );
...
}

java.util.Collection



JXTemplateGenerator

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
  <map:components>
    <map:generators internal-only="file">
      <map:generator 
        label="content" 
        logger="sitemap.generator.jxpath"
        name="jx"
        src="org.apache.cocoon.generation.JXTemplateGenerator"/>
     </map:generators>
   </map:components>
   <map:pipelines>
    <map:pipeline internal-only="true">      
      <map:match pattern="screens/*.html">
        <map:generate type="jx" src="screens/{1}.xml"/>
        <map:transform src="stylesheets/global.xsl"/>
        <map:serialize type="html"/>
      </map:match>
    </map:pipeline>
   </map:pipelines>
</map:sitemap/>



JXTemplateGenerator

 access to the FOM objects
 support for JEXL and JXPath expressions
 very fast

      <form action="${continuation.id}.cont">
        <select name="cityId">
          <jx:forEach var="city" items="${cities}">
             <option value="${city.id}">${city.name}</option>
          </jx:forEach>
        </select>
        <br/>
        <br/>
        <input type="submit" value="Make your choice"/>
      </form>



Cocoon Forms (aka Woody)

 get rid of all the explicit mappings from request 
parameters to beans (which could be harmful!)

 validation, strong datatyping, internationalization 
(i18n) 

 following a widget approach 
 special API for flowscript integration
 the community solution (will deprecate all former one-

man shows like JXForms, XMLForms, ...)
 expect a release 2004/Q1 - Q2

(personal opinoin of the author of this presentation ;-)



Conclusion

 easily maintainable page flow because of 
clean designs contracts and no fragmentation
(find out in minutes what a web applications does!)

 implicit state management 
(you don't have to find out where the browser is – you 
always know it!)

 no back button problem
 no trade-offs between fast development cycles/rapid 

prototyping and clean designs
 perfectly fits into the Cocoon and J2EE world


