
Advanced WebApplications
using

Reinhard Pötz, Apache Cocoon Comitter

reinhard@apache.org
http://www.poetz.cc

CocoonDay, 2003-11-18, Vienna

Goals

 give an overview how to implement Web Applications
with Cocoon2

 show design patterns
 focus on the Cocoon Control Flow
 no details on related aspects but hints
 after this presentation you should have a starting point

for your first application using the Cocoon Control
Flow

Demo application

Thinking in layers ...

 easily maintainable
 reuseable

clear contracts

 ... separation of

 data model
 view layer
 application flow

goals

reached by

enforces

Page flow
city

hotel

personal data

summary

age

car rentals

user older
than 18

user younger
 than 18

Data model

Hotel

City

User
Car rental

Order

database

View layer

Implementing the Flow layer

 distributed over all pages
page flow is embedded in the hard wired links between the pages
(often used in PHP/ASP/JSP applications)

 hard to understand spathetti code, not maintainable, sideeffects

 MVC (model view controller)
the controller is used to process requests and to select the views
(e.g. implemented by the Struts framework or solutions based on Actions in
Cocoon)

 application is fragemented and often it is difficult to understand the logic

 explicit state handling

 MVC+
page flow is described as a sequential program using continuations
(e.g. Cocoon Advanced Control Flow – using Flowscript)

 very easy to understand the page flow

 implicit state handling (continuations)

Flowscript – Integration into the Cocoon
world [1]

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
 <map:flow language="javascript">
 <map:script src="flow.js"/>
 </map:flow>
 <map:pipelines>
 <map:pipeline>
 <map:match pattern="booking.html">
 <map:call function="booking"/>
 </map:match>
 </map:pipeline>
</map:sitemap>

Flowscript – Example (flow.js)

function booking() {
...
 var cities = getAllCities();
 cocoon.sendPageAndWait("screens/destination.html",
 {
 cities : cities
 }
);
 var city = getCity(cocoon.request.cityId, cities);
 var hotels = city.getHotels();
 cocoon.sendPageAndWait("screens/hotellist.html",
 {
 cityName : city.getName(),
 hotels : hotels
 }
);
...
}

Continuations ... what? [1]

function booking() {
...
 var cities = getAllCities();
 cocoon.sendPageAndWait("screens/destination.html",
 {
 cities : cities
 }
);
 var city = getCity(cocoon.request.cityId, cities);
 var hotels = city.getHotels();
 cocoon.sendPageAndWait("screens/hotellist.html",
 {
 cityName : city.getName(),
 hotels : hotels
 }
);
...
}

Continuations ... what? [2]

 Continuations ...
 know where the program execution stopped
 are tied to a stack (which is shared between all

continuations)
 contain local variables
 are created after cocoon.sendPageAndWait(...)
 have an unique identifier
 are light-weight Java objects

Flowscript – Integration into the Cocoon
world [1]

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
 <map:pipelines>
 <map:pipeline>
 <map:match pattern="*.cont">
 <map:call continuation="{1}"/>
 </map:match>
 </map:pipeline>
</map:sitemap>

Continuations ... what? [3]

function booking() {
...
 var cities = getAllCities();
 cocoon.sendPageAndWait("screens/destination.html",
 {
 cities : cities
 }
);
 var city = getCity(cocoon.request.cityId, cities);
 var hotels = city.getHotels();
 cocoon.sendPageAndWait("screens/hotellist.html",
 {
 cityName : city.getName(),
 hotels : hotels
 }
);
...
}

Flowscript supports ...

 FOM (flow object model)
 access to the environment (request, response, session, context, sitemap

parameters)

 access to the framework (Avalon components, logging framework)

 page flow control (cocoon.sendPage(), cocoon.sendPageAndWait(),
cocoon.redirectTo()

 access to the continuations' tree

 Java Life Connect
 Access all Java classes available in the Cocoon classloader:

var map = new Packages.java.util.HashMap();

Why Javascript?

 known by many developers worldwide
 simpler than Java but nearly as powerful
 support for continuations
 faster roundtrips (save & reload)
 integrates well (see Live-Connect)
 not verbose

Integrate your backend

 because of the highly flexible architecture
everything that Cocoon/Java/J2EE world
offers is possible, e.g.

 XML documents (e.g. generated by Cocoon pipelines)

 EJB

 Beans via O/R mapping tools

 the demo application uses OJB (PB API) – the Apache
O/R mapping tool
(see http://db.apache.og/ojb)

View Layer - Details

 Power of Cocoon pipelines
provided by Cocoon pipelines (full power of Cocoon multi-client/multi-
user/multi-language support/caching)

 Templating
there are a few generators that are „flow aware“
recommended templating approach:
JXTemplateGenerator/Transformer

 Inversion of Control
the view layer doesn't know where to find data (operates on JavaBeans
or XML-fragments) – data objects are passed by the flow layer

Passing Objects to the View

function booking() {
...
 var cities = getAllCities();
 cocoon.sendPageAndWait("screens/destination.html",
 {
 cities : cities
 }
);
 var city = getCity(cocoon.request.cityId, cities);
 var hotels = city.getHotels();
 cocoon.sendPageAndWait("screens/hotellist.html",
 {
 cityName : city.getName(),
 hotels : hotels
 }
);
...
}

java.util.Collection

JXTemplateGenerator

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
 <map:components>
 <map:generators internal-only="file">
 <map:generator
 label="content"
 logger="sitemap.generator.jxpath"
 name="jx"
 src="org.apache.cocoon.generation.JXTemplateGenerator"/>
 </map:generators>
 </map:components>
 <map:pipelines>
 <map:pipeline internal-only="true">
 <map:match pattern="screens/*.html">
 <map:generate type="jx" src="screens/{1}.xml"/>
 <map:transform src="stylesheets/global.xsl"/>
 <map:serialize type="html"/>
 </map:match>
 </map:pipeline>
 </map:pipelines>
</map:sitemap/>

JXTemplateGenerator

 access to the FOM objects
 support for JEXL and JXPath expressions
 very fast

 <form action="${continuation.id}.cont">
 <select name="cityId">
 <jx:forEach var="city" items="${cities}">
 <option value="${city.id}">${city.name}</option>
 </jx:forEach>
 </select>

 <input type="submit" value="Make your choice"/>
 </form>

Cocoon Forms (aka Woody)

 get rid of all the explicit mappings from request
parameters to beans (which could be harmful!)

 validation, strong datatyping, internationalization
(i18n)

 following a widget approach
 special API for flowscript integration
 the community solution (will deprecate all former one-

man shows like JXForms, XMLForms, ...)
 expect a release 2004/Q1 - Q2

(personal opinoin of the author of this presentation ;-)

Conclusion

 easily maintainable page flow because of
clean designs contracts and no fragmentation
(find out in minutes what a web applications does!)

 implicit state management
(you don't have to find out where the browser is – you
always know it!)

 no back button problem
 no trade-offs between fast development cycles/rapid

prototyping and clean designs
 perfectly fits into the Cocoon and J2EE world

